Ученые превратили алмаз в практически идеальный полупроводник для силовой электроники. Свойства драгоценных камней Электрические тела такие как алмаз

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Предположим, вы внезапно попали в ювелирный магазин и увидели потрясающее кольцо с бриллиантом. Кольцо-то на первый взгляд вроде бы хорошее, но насколько можно доверять магазину? Можно спросить сертификат на бриллиант. В большинстве российских ювелирных магазинов вам ответят, что по правилам торговли – бирка является единственным и достаточным сертификатом, удостоверяющим подлинность изделия. Где-нибудь в Европе или США такое утверждение звучит смешно и абсурдно, но не в России. При всем уважении к нашим местным ювелирам, как все-таки определить бриллиант перед вами или стекляшка? Определить характеристики бриллианта намного сложнее, поэтому мы даже не будем пытаться этого сделать. На первом этапе важно лишь узнать бриллиант это или что-то другое.

Как известно, чтобы провести любое, самое любительское исследование, необходимо формализовать результат. С другой стороны, можно воспользоваться скупкой золота , по крайней мере дороже Вашу драгоценность там точно не оценят, так что отталкиваться можно оттуда.

То есть нам необходимо знать наперед, какой результат исследования - что именно означает.

Для начала опровергнем всевозможные дурацкие легенды, чтобы не попадаться в ловушку людского невежества. Ниже вы найдете список рецептов, которые НЕ работают или опасны для вашего бриллианта, которые заведомо НЕЛЬЗЯ использовать, чтобы отличить бриллиант от не бриллианта.

Вариант №1. «Бриллиант чистой воды, будучи положен в стакан с водой – становится полностью невидимым. Если бриллиант невидим в воде, это настоящий, подлинный бриллиант». Ложь абсолютная и не имеющая никакой научной основы. Коэффициент преломления воды 1,333, коэффициент преломления алмаза (бриллианта) 2,419. Одно вещество может стать невидимым в другом веществе, только если коэффициенты преломления одинаковы или близки с точностью до одной, двух десятых долей. То есть, будь у бриллианта преломление
1,333, то эффект невидимости можно было бы ожидать. Но бриллиант и вода отличаются по преломлению почти в 2 раза. В воде бриллиант будет отлично виден при любых обстоятельствах.

Вариант №2. «Бриллиант самое твердое вещество на земле и он с легкостью поцарапает оконное стекло. Если провести бриллиантом по стеклу, то останется царапина». С точки зрения теории – все правильно. Должен поцарапать. С точки зрения практики – в бриллианте присутствуют некоторые внутренние напряжения, случайно попав на которые, при попытке поцарапать стекло – вы просто отколете кусочек бриллианта. Приделать его назад не будет никакой возможности. К тому же очень многие материалы тверже стекла, например сапфир и топаз. Это означает, что и топаз и сапфир точно также замечательно поцарапают стекло. Твердость стекла по Моосу 5 – 6,5, сапфира 9, топаза 8. Есть еще один, похожий, совершенно идиотский прием, обыгранный в кинематографе: «Если по бриллианту сильно ударить молотком, то с ним ничего не случится, потому что он твердый». Бриллиант от такого удара вполне может расколоться опять же из-за внутрикристаллических напряжений.

Вариант №3. «Если на бриллиант подышать, то из-за высокой теплопроводности он останется холодным, а если это не бриллиант – он мгновенно нагреется». С точки зрения теории – не лишено смысла. Бриллиант действительно имеет самую высокую теплопроводность. Но вот каким образом вы собираетесь померять изменение температуры на нескольких квадратных миллиметрах на несколько градусов – это загадка. Наша кожа, конечно, чувствует изменения температуры, но не на несколько градусов на площади в несколько квадратных миллиметров. То есть, если к коже прикоснуться гвоздем, нагретым градусов до 80-100, то вы это, скорее всего, почувствуете. Но разницу между комнатной температурой и температурой тела на острие гвоздя – нет.

Вариант №4 «Настоящий бриллиант горит, а имитация бриллианта расплавляется». Абсолютная правда! Алмаз и бриллиант полностью сгорают на воздухе при температуре 850-1000 градусов.

Правда, что вы собираете делать с информацией, что ваш бриллиант БЫЛ настоящим? Вам конечно виднее, но…

Итак, как нам удалось выяснить, мы НЕ будем использовать для экспертизы бриллианта: стакан с водой, оконное стекло и молоток, а также пламя газовой горелки. Что же нам понадобится? Прежде всего, лупа с увеличением 10х. На первое время подойдет любая, даже китайская, купленная в переходе метро. Правда, в этом случае выбирайте ту, у которой написано увеличение 30х. Реальные 30 крат там конечно и близко не стояли, но в 9,5-10 раз будет увеличивать четко и стоить при этом будет рублей 150-300.

Что смотреть? Бриллиант действительно самое твердое вещество в мире, поэтому на ребрах граней у бриллианта не может быть сколов и выщерблин. Линии ребер граней бриллианта всегда ровные. Еще одна особенность ребер – они всегда острые. Округлые, оплывшие ребра – признак того, что это стеклянный страз, а скругленные ребра получаются из-за того, что камень не гранили, а отливали в форме. Литье не позволяет получить «бритвенной» остроты.

Второе, что можно увидеть в лупу – это двоение ребра граней внутри камня. Бриллиант однопреломляющий камень, и если вы через площадку смотрите на какую-либо грань камня, то только ее границы вы и видите.

В синтетическом муассаните, бесконечно похожем на бриллиант, при определенной практике, вы сможете увидеть небольшое раздвоение граней. Возникнет иллюзия, что грани слегка двоятся в глазах. Такую же, только гораздо более выраженную картинку дает природный циркон. У него раздвоение граней очень заметное.

При отсутствии специального образования по гемологии, это пожалуй все, что вы можете рассмотреть с помощью лупы. Процентах в 70 случаев этого достаточно, но что если не получается сделать никаких выводов? Вроде и не двоится и вроде бы и грани острые, но в то же самое время какие-то интуитивные сомнения.

Теперь самое время перейти к приборам. Самый распространенный недорогой прибор для тестирования бриллиантов – тепломер. У бриллианта действительно очень высокая теплопроводность, сравнимая с серебром и превосходящая многие металлы. Простейший тепломер поможет вам сразу сказать: камень скорее всего бриллиант или нет. Почему «скорее всего»? Потому что на обычный тепломер также неплохо реагируют сапфир и муассанит. И если бесцветный сапфир крупного размера сразу бросается в глаза (он вроде бы и чистый, но не блестит совсем, какой-то серый и мутный, но при этом никаких включений внутри камня нет), то муассанит вообще не вызовет никаких подозрений.

Гемтестер не ошибается насчет сапфиров, но стоит существенно дороже.

У него есть свои недостатки. В частности из-за исключительно высокой чувствительности щупа на показания прибора может влиять сквозняк, охлаждающий щуп и соответственно занижающий показания. Гемтестер довольно капризный в этом отношении прибор.

На муассанит существует отдельный тестер. Порядок работы с двумя тестерами такой: сначала проверяете имеет ли камень теплопроводность бриллианта, а вторым тестером смотрите имеет ли камень электрическую проводимость муассанита. Проверять какой-либо другой камень муассанитовым тестером абсолютно бессмысленно, поскольку вы не сможете интерпретировать полученный результат. Допустим, на ярко синем большом камне муассанит-тестер показывает «муассанит». Что это означает? Да кто его знает? Ничего это не означает. Бредовое показание прибора, не предназначенного для проверки неизвестных больших синих камней.

Есть совсем современные совмещенные тестеры, которые сами сначала проверяют камень на теплопроводность и во второй фазе, если теплопроводность соответствует бриллианту, проверяют камень на проводимость муассанита. Такие приборы удобнее, но сильно дороже.
Предположим, вы посмотрели в лупу, увидели четкие грани, отсутствие двоения граней. Проверили комбинированным тестером – камень четко бриллиант.

Какие еще неприятности вас могут ждать? Если бриллиант заявлен с высокими характеристиками и стоит дорого, вам могут продавать под видом натурального бриллианта синтетический, выращенный по HPHT (High Pressure High Temperature) методу, либо обработанный по этому методу бриллиант с целью улучшения цвета. Выражаясь языком Российского ТУ, бриллианты с характеристиками лучшими, чем 3/3 могут быть облагорожены или выращены, что естественно сказывается на цене. Такие бриллианты должны стоить процентов на 40-60% дешевле природных или тех, у которых цвет нетронут человеком. Самостоятельно обнаружить признаки HPHT вне стен лаборатории до недавнего времени было невозможно. Однако, знаменитая на весь мир Антверпенская лаборатория HRD, представила миру карманный прибор, который позволяет буквально на коленке определить – стоит сомневаться в бриллианте или нет.

Прибор D-SCREEN имеет всего 3 светодиода: зеленый – «с вашим бриллиантом все ОК», оранжевый – «вашему бриллианту требуется экспертиза в лаборатории» и красный – «кажется, садятся батарейки:)». D-Screen тестирует камни весом от 0, 2 до 10 карат, цвета от D до J по шкале GIA. Сразу скажем, прибор стоит дорого. Очень дорого. Если же ваша зарплата порядка миллиона рублей в месяц, то для вас вполне приемлемо. Прибор уникальный, полезный и незаменимый.

У них же, у HRD, есть еще более продвинутый прибор Alpha Diamond Analyzer. Но это уже программно-аппаратный комплекс, который позволяет проводить полноценный инфракрасный спектроскопический анализ.

Самостоятельно пользоваться таким прибором вам будет затруднительно без соответствующей подготовки, да и стоит он сравнимо с квартирой на окраине Москвы. Так что этот вариант для совсем фанатичных.

Какие выводы можно сделать? Бриллианты стоит покупать только при наличии лупы 10Х, теплового тестера и тестера на муассанит. Желательно, что все эти приборы были у продавца. Если у бриллианта заявлены высшие характеристики, лучше, чем 3/3 или VVS1 F, то это повод проверить камень прибором D-Screen. D-Screen страшно дорогой прибор и в Москве он есть у только у единичных продавцов. Прибегать к помощи такого прибора при покупке недорогого украшения с бриллиантом, стоимостью до 300’000 рублей бессмысленно. Все равно, что требовать проверить на автосервисе, что в ваших «Жигулях» все запчасти аутентичные. А вот если стоимость украшения начинается от 500’000 рублей – лучше напрячь продавца и потребовать немедленную проверку при вас на D-Screen. Вообще, покупать украшения с бриллиантами по цене выше 300’000 рублей без сертификата гемологической лаборатории категорически не рекомендуется. Почему именно такой порог цены? Где-то в этом диапазоне цен в России начинают продавать украшения с бриллиантами еще меньше 1 карата, но уже с высокими характеристиками.

Высокие характеристики – это очень широкое поле для введения в заблуждение кого угодно, даже профессионала. Поэтому лучше перестраховаться и попросить сделать сертификат.

Сертификация бриллиантов в России дело добровольное и платное. Деньги за сертификат возьмут с покупателя. Если продавец сделает сертификат за свой счет, то это не его обязанность, это большая любезность с его стороны. Обязательно поблагодарите, если сертификат вам предоставят бесплатно. Сколько стоит сертификат? В зависимости от размера и характеристик бриллианта от 5’000 до 60’000 рублей.

Электричество и магнетизм в XVII в. Нам осталось рассмотреть достижения доныотоновской физики в области изучения электричества, магнетизма и света. Младенческая пора в истории электричества и магнетизма заканчивается Портой. Новая эра в изучении электромагнитных явлений открывается знаменитым сочинением Гильберта (Вильям Гильберт, придворный врач английской королевы Елизаветы, родился в 1540 г., умер в 1603 г.) «О магните, магнитных телах и о большом магните. Новая физиология» (1600 г.).

Отказавшись от фантастических домыслов и басен, Гильберт в своих исследованиях применяет к электрическим и магнитным явлениям экспериментальный метод. Результаты, полученные им таким путём, поистине замечательны.

Вопреки общепринятому в то время мнению, по которому компас направляется к некоторой небесной точке, Гильберт полагает причиной направляющего действия на магнитную стрелку магнетизм Земли. Для проверки своей теории он изготовляет намагниченный шар и показывает, что магнитная стрелка, на этом шаре ведёт себя, как компас на земной поверхности, наклоняясь на разных широтах, под разными углами. Значительно труднее Гильберту было объяснить магнитное склонение, так как он полагал, что географические и магнитные полюса, совпадают. Ему пришлось допустить, что вода океанов, немагнитна, что и обусловливает отклонение стрелки вблизи берегов.

Продолжая исследование магнитных явлений, Гильберт открыл магнитную индукцию. Он установил, что стальной якорь усиливает магнитное действие, что железо и сталь намагничиваются влиянием, причём сталь сохраняет магнитные свойства. Ему удалось намагнитить железные проволоки магнитным полем Земли. Наконец, ему же принадлежит открытие факта неотделимости магнитных полюсов.

Обратившись к электрическим явлениям, Гильберт нашёл, что свойством притяжения обладает не только натёртый янтарь, а и ряд других тел (алмаз, сапфир, аметист, горный хрусталь, сланцы, сера, смолы и др.), которые он назвал электрическими, введя, таким образом, этот термин в науку. Ему удалось наэлектризовать свыше двух десятков тел. Другие же тела, и в первую очередь металлы, как он полагал, не электризуются. Сравнение электрических и магнитных явлений привело Гильберта к убеждению в глубоком их различии. Своё мнение он обосновывал следующими; доводами:

1) Электрические свойства возбуждаются (трением), магнитные же присущи намагниченным телам по природе.

2) Магнитные действия бывают двух родов: притягательные и отталкивательные, электрические же - только притягательные (электрических отталкиваний Гильберт не знал).

3) Электрические притяжения слабее магнитных, но зато универсальны.

4) Электрическую силу можно уничтожить влажностью, магнитную - нет.

В соответствии с этим Гильберт полагает, что магнетизм, так же как. и тяжесть, есть некоторая изначальная сила, исходящая из тел, в то время, как электризация обусловлена выжиманием из пор тела особых истечений, в результате трения. Роль обеих этих сил в природе оказывается, таким, образом, глубоко различной. Это подчёркивание Гильбертом различной природы электричества и магнетизма наложило глубокий отпечаток на, всю последующую историю электромагнетизма, в которой до Ампера и Фарадея обе группы явлений рассматривались изолированно друг от друга.

Сочинение Гильберта явилось уникумом, и в XVII в. к его результатам было добавлено мало. Галилей в «Диалоге» подтверждает наблюдение Гильберта об усилении действия магнита арматурой и в следующих замечательных выражениях характеризует историческую роль Гильберта:

«Воздаю хвалу, дивлюсь, завидую Гильберту. Он развил достойные удивления идеи о предмете, о котором трактовало столько гениальных людей, но который ни одним из них не был изучен внимательно. Высочайшей похвалы заслуживает он, по мнению моему, за то, что произвёл такое количество новых и точных наблюдений, к посрамлению пустого и лживого автора (Галилей имеет в виду Порту), который не только пишет о том, что сам знает, но передаёт всё, что пришло к нему от невежественных глупцов, не заботясь проверить опытом сообщённое и, повидимому, затем, чтобы книга была толще. Гильберту недостаёт только побольше математики и особенно геометрии. Большое знакомство с нею не позволило бы ему так решительно признавать доказательством те основания, которые он приводит как причину фактов, им правильно наблюдавшихся.

Я не сомневаюсь, что со временем эта отрасль науки сделает успехи как вследствие новых наблюдений, так и в особенности вследствие строгой методы доказательств. Но это не умаляет славы первого изобретателя. Я первого изобретателя лиры - как ни груб по устройству и звуку был его инструмент - ставлю не только не ниже, а много выше сотни других художников, которые довели эту отрасль до совершенства. Другие основательно, по мнению моему, первых изобретателей благородных инструментов причисляли к богам… От простейших вещей восходить к великим открытиям и под первыми ребяческими очертаниями предчувствовать скрытое удивительное искусство не дело дюжинных людей: такие прозрения и мысли принадлежат гениям сверхчеловеческой силы».

Поразительна прозорливость Галилея, предугадавшего развитие математической теории электромагнитных явлений и правильно оценившего основоположное значение работ Гильберта. Труды «дюжинных людей» XVII в., вроде «Магнитного искусства» Кирхера (1634) и «Магнитной философии» Кабео (1639), представляют шаг назад по сравнению с творением Гильберта. Описание забав и фокусов (вроде «магнитного ежа») сочетается в них с фантастическими вымыслами, схоластическими теориями и с крупицами действительных наблюдений. Только Герике, построившему прообраз электрической машины (серный шар, вращавшийся на железной оси, электризовался трением об руку), удалось сделать существенные наблюдения: электрическое отталкивание и распространение электрической силы по проводнику, но его открытия остались незамеченными.

Значительно больших результатов, представляющих большой практический интерес, удалось достичь в области земного магнетизма. В 1625 г. Генри Геллибранд открывает вариацию магнитного отклонения и результаты своих наблюдений опубликовывает в 1635 г. С тех пор становится ясной необходимость систематического изучения элементов земного магнетизма. Многолетние наблюдения и экспедиции делают особенно ценными работы Галлея, опубликовавшего первые карты с изогоническими линиями и выдвинувшего теорию вариации склонения. Работы Галлея падают на последние годы века (1683-1702) и завершают первый круг в развитии учения о земном магнетизме.


Камень, о котором слагали легенды, писали книги, за который сражались и убивали. Самый дорогой и красивый драгоценный камень мира – алмаз.

Известный человечеству с самой древности, алмаз получил свое название за твердость – "адамас", значит "непобедимый". Единственный камень, имеющий твердость 10 баллов по современной шкале.

В природе встречаются алмазы не только прозрачные, но и камни следующих оттенков: голубой, розовый, оранжевый, красный, зеленый, синий.

Но все же прозрачный алмаз, который называют "бриллиант чистой воды", самый распространенный среди природных алмазов.

Чистота алмаза варьируется от "безупречно чистого", того, у которого нет трещин и сколов даже при десятикратном увеличении, до "несовершенного", камня, у которого вкрапления и повреждения видны невооруженным глазом.

До того как стала возможным добыча драгоценных камней в месторождениях с использованием орудий и техники, алмазы вымывались искателями из речного песка и гальки. Месторождения алмазов находятся в России и Австралии, а также в некоторых африканских странах – Ботсване, Конго, Анголе, ЮАР.

Из-за того, что алмаз – крайне редкий драгоценный камень, его стоимость превышает все мыслимые границы.

Наиболее популярны камни алмаза весом 0,1 карат, они стоят около 200 долларов за штуку. Также иногда удается огранить самородки весом до 15 карат. Самые редкие – большие алмазы под 100 карат.

Алмазы часто подделывают. В основном за них выдают прозрачные разновидности циркона , хрусталя и сапфира. Но подделкой не считается искусственно созданный лабораторный алмаз.

Современные технологии позволяют создавать самородки такой чистоты и качества, что их невозможно отличить от природных даже в лаборатории.

Интересное замечание: бриллиант – это не любой ограненный алмаз.

Да, существует несколько способов огранки алмаза и "бриллиант" всего лишь одна из них.

Огранка "бриллиант" подразумевает идеально ограненный камень, имеющий 57 граней.

Качество такого минерала зависит от мастерства огранщика, но считается, что именно 57 граней позволяют алмазу полностью раскрыть свою красоту, прозрачность и игру света. Другие виды огранки алмаза – "маркиз", "принцесса", "ашер", "сердце".

Магические свойства алмаза

Первое, что нужно знать, желающим иметь алмаз в качестве талисмана, это то, что купленный за свои деньги в розничном магазине камень никогда не сможет раскрыть свои волшебные свойства.

Амулетом и талисманом может служить только камень, полученный в наследство или подаренный.

Алмаз обладает очень сильной энергетикой и оберегает только тех, кто способен ее выдержать.

Это должен быть человек волевой и сильный духом, иначе, алмаз "поглотит" его жизненную энергию и от природы аморфный будет чувствовать себя еще более вялым и уставшим.

Алмаз – один из самых сильных и универсальных талисманов.

Его магические свойства сосредоточены в области обеспечения владельца внутренней силой, энергетикой, властностью, способностью отстаивать свою точку зрения, добиваться своего любыми целями. Это талисман победы и торжества.

Также алмаз защищает владельца от дурных мыслей, депрессий, всяческого негатива. Алмаз как бы выстраивает вокруг своего владельца щит и те, кто пытается "запустить" в него негативом – получают ровно столько же обратно.

Алмаз, как и положено самому дорогому камню, своенравный. Пример тому знаменитый "Алмаз Хоуп".

Лечебные свойства алмаза

Кроме того что алмаз подпитывает владельца энергией, а значит тот меньше устает и больше успевает, камень-талисман также полезен в лечении заболеваний, связанных с головой и мозгом в частности. Это головные боли, вызванные стрессом, бессонница, депрессия, аневризмы, дистонии и т. д.

Что касается других частей тела, алмаз полезен людям, у которых диагностированы камни в почках. С талисманом из алмаза они могут избавиться от заболевания скорее.

Женщины в возрасте, имеющие украшения из бриллиантов, могут заметить значительное замедление старения кожи лица.

Знак зодиака

Алмаз подходит всем знакам Зодиака, но более всего Овнам и Тельцам.

Овнам алмаз помогает сосредоточиться на главном деле, направить на его выполнение всю энергию и достичь успеха.

Как носить

Прежде всего, многих интересует, как отличить настоящий природный алмаз от подделки.

Если это приходится делать, не вооружившись лабораторными инструментами, то можно посмотреть сквозь самородок на солнце.

Штука в том, что настоящий алмаз не пропускает свет и яркое солнце будет видно через него как белесую точку.

Подделки из полудрагоценных камней пропускают лучи солнца и получаются блики.

Драгоценный алмаз должен быть огранен только в соответствующую ему драгоценную оправу – платину, золото. Даже серебро уже считается "недостойным" металлом для огранки алмаза.

Хранить украшения из бриллиантов и алмазов, других видов огранки, следует строго отдельно от остальных украшений.

Так как алмаз – самый твердый из минералов, ограненный камень легко может поцарапать украшения с другими камнями, даже если это сапфир или гранат (тоже весьма твердые камни). И алмазы могут поцарапать друг друга, поэтому нужно хранить каждое украшение отдельно.

Урок в 8 классе.

Тема урока: Электризация тел. Два рода зарядов. Взаимодействие заряженных тел. Электроскоп. Проводники и непроводники электричества.

Цели урока:

образовательные:

  • формирование первоначальных представлений об электрическом заряде, о взаимодействии заряженных тел, о существовании двух видов электрических зарядов; выяснение сущности процесса электризации тел.

развивающие:

  • развитие навыков выделять электрические явления в природе и технике.
  • воспитательные:

  • развитие интереса к науке и умение работать с научно-популярной литературой.
  • Оборудование:

    электроскоп, электрометры, гильза из фольги на подставке стеклянная и эбонитовая палочки, кусок меха и щелка, мультимедийный проектор, ноутбук.

    План урока

    I. Организационный момент.
    II. Объяснение нового материала.
    III. Запись домашнего задания.
    IV. Закрепление изученного материала.
    V. Подведение итогов. Выставление оценок.

    Ход урока

    I. Организационный момент.

    Ребята, посмотрели друг на друга. Пожелали друг другу хорошего настроения.

    II. Объяснение нового материала:

    Учитель

    Еще в древности люди обратили внимание на то, что потертый шерстью кусочек янтаря начинает притягивать к себе различные мелкие предметы: пылинки, ниточки и тому подобное.

    Демонстрация

    Вы сами можете легко убедиться, что эбонитовая палочка, потертая о шерсть, начинает притягивать небольшие кусочки бумаги, листочки фольги. Расческа потертая о волосы также притягивает мелкие листочки бумаги.

    Как объяснить что происходит? Почему эбонитовая палочка потертая о шерсть притягивает к себе листочки фольги?

    Сегодня на уроке мы с вами выясним сущность данного явления и постараемся его объяснить.

    Запишите пожалуйста тему урока

    Слайд1

    Электризация тел. Два рода зарядов. Взаимодействие заряженных тел. Электроскоп. Проводники и непроводники электричества.

    Слайд 2

    Учащимся предлагается план урока

    Сообщение ученика

    Наука об электрических явлениях зародилась еще до нашей эры, начавшись с наблюдения за электрическими свойствами янтаря. В отличие от механики – науки о движении, давлении, равновесии, наука об электричестве до VI века так и оставалась в зачаточном "янтарном" состоянии. Крупный шаг вперед в изучении электрических явлений после древних греков сделал английский врач У.Гильберт (1540–1603). Он установил, что свойство притягивать легкие предметы после натирания, кроме янтаря, приобретают также и алмаз, сапфир, аметист, горный хрусталь, сера, смола и некоторые другие тела. Гильберт их назвал "электрическими", то есть "подобными янтарю". Все прочие тела, в первую очередь металлы, которые не обнаруживали таких свойств, он назвал "неэлектрическими". Так в науку вошел термин "электричество", и было положено начало систематическому изучению электрических явлений. Следующий шаг в изучении электрических явлений был сделан бургомистром немецкого города Магдебурга Отто фон Герике (1602–1686). Он сконструировал первую электрическую машину, представлявшую собой большой шар из серы, вращавшийся на железной оси. При натирании шара ладонью он сильно электризовался и мог электризовать другие тела. Используя свою машину, Герике впервые наблюдал отталкивание наэлектризованных тел и слышал треск электрических искр. С начала XVIII века электрическими экспериментами увлекаются члены Лондонского Королевского научного общества. Они наблюдают электрическое притяжение не только в воздухе, но и в вакууме, изучают возникновение электрических искр, открывают явление электропроводности и указывают, что для сохранения заряда тела оно должно быть изолировано от других тел. В 1733 году француз Ш. Дюфэ впервые устанавливает существование двух родов зарядов – положительного и отрицательного (прежде заряды тел считали отличающимися лишь по величине). С середины XVIII века электрические опыты проводились в светских салонах и королевских дворцах, на заседаниях ученых обществ и в частных домах.

    Учитель

    Итак, что мы наблюдали?

    Это явление называется электризацией , а силы, действующие при этом – электрическими силами .

    Слово электризация происходят от греческого слова " электрон" , что означает " янтарь" . При трении расчески о волосы или эбонитовой палочки о шерсть предметы заряжаются , на них образуются электрические заряды .

    Заряженные тела взаимодействуют друг с другом и между ними возникают электрические силы. Электризоваться трением могут не только твердые тела, но и жидкости, и даже газы.

    Таким образом, электризация – физическое явление.Существует два разных рода электрических зарядов. Условно они названы " положительным" зарядом и " отрицательным" зарядом.

    Тела при электризации могут заряжаться как положительно, так и отрицательно

    Положительно заряженными

    называют тела, которые действуют на другие заряженные предметы так же, как стекло, наэлектризованное трением о шелк.
    Отрицательно заряженными называют тела, которые действуют на другие заряженные предметы так же, как эбонит, наэлектризованный трением о шерсть.

    Вывод : Основное свойство заряженных тел и частиц: одноименно заряженные тела и частицы отталкиваются, а разноименно заряженные – притягиваются.

    Электризуя разные тела, легко заметить, что сила взаимодействия между ними может быть различной: больше или меньше. В физике это объясняют тем, что заряд тела может быть большим или маленьким. Следовательно, заряд – физическая величина. Единицей измерения заряда служит 1 кулон. (1Кл)

    Рис 1

    - Строение электроскопа представляет ученик

    Для обнаружения наэлектризованных тел служат специальные приборыэлектроскопы или электрометры

    Электроскоп имеет цилиндрический корпус (1) , который закрыт стеклом (2). Внутрь прибора вставлен металлический стержень (3) с легкоподвижными лепестками (4). От металлического корпуса прибора стержень отделен пластмассовой втулкой (5). Если выступающей части стержня коснуться каким-нибудь наэлектризованным телом, то лепестки отклонятся друг от друга.

    Электроскоп

    – прибор для обнаружения наэлектризованных тел. Принцип его действия основан на отталкивании одноименно заряженных тел.

    Демонстрация

    Пусть левый электроскоп заряжен, а правый – нет. Соединим электроскопы проволокой. Мы увидим, что заряд поровну распределится между приборами. Убрав проволоку и коснувшись правого электроскопа рукой, мы заставим его заряд перейти внутрь нашего тела. После этого опять соединим электроскопы проволокой. Так можно поступать сотни раз: заряд будет делиться на все более мелкие части.

    Однако американский физик Р.Милликен опытами установил, что заряд любого тела можно делить не бесконечно.

    Существует наименьшая порция заряда – элементарный заряд: 1,6·10 -19 Кл. Заряд никакого тела не может быть меньше этой величины.

    Электрический заряд-это мера свойств заряженных тел определенным образом взаимодействовать друг с другом

    Учитель

    Так что же такое электризация?

    Наэлектризуем эбонитовую палочку шерстяной варежкой, а стеклянную палочку – шелковым платком. Подвесив палочки на нитях, увидим, что эбонит и шерсть, стекло и шелк притягивают друг друга, а стекло и шерсть, эбонит и шелк отталкиваются друг от друга:

    При электризации трением два тела заряжаются равными по модулю и противоположными по знаку зарядами. Благодаря контакту одно тело теряет электроны, а другое их же приобретает. Поэтому на одном теле появляется избыток электронов (отрицательный заряд), а на другом - недостаток (положительный заряд).

    : Тело заряжено отрицательно - у тела имеется избыток электронов

    Тело заряжено положительно - у тела имеется недостаток электронов

    В зависимости от способа электризации два наэлектризованных тела либо притягиваются, либо отталкиваются. Тела, наэлектризованные трением друг о друга, а также наэлектризованное и не наэлектризованное тела всегда только притягиваются.

    Существуют вещества, электроны которых настолько слабо связаны со своими атомами, что могут отделяться от них даже и без трения. Достаточно простого соприкосновения тел, и они становятся заряженными. Это другой вид электризации - электризация индукцией.

    Демонстрация

    Сначала электрометры не были заряжены. Предположим теперь, что поднесенная к ним палочка имеет положительный заряд. При этом в левой части правого шара образуется отрицательный заряд. А поскольку ионы металла прочно связаны друг с другом, образуя кристаллическую решетку, они не смогут никуда передвинуться, и во всех остальных местах образуется недостаток электронов, то есть положительный заряд. Если теперь палочку убрать, то электроны вновь равномерно распределятся между шарами, и они станут незаряженными. Но, если же, не убирая палочки, раздвинуть шары, то они так и останутся разноименно заряженными.

    : Электризация тел индукцией объясняется перераспределением электрических зарядов между телами (или частями тела), в результате чего тела (или части тела) заряжаются разноименно.

    Однако не все тела заряжаются в результате электризации индукцией. Электроны есть в атомах всех тел, тогда почему же не удается наэлектризовать индукцией пластмассовые или резиновые шары? Это значит, что электроны этих тел не являются свободными, то есть не образуют перераспределение зарядов между телами. Поэтому для электризации этих веществ необходимо прибегнуть к трению, способствующему отделению электронов от атомов.

    В проводниках некоторые электроны слабо связаны с ядром атома и могут перемещаться от атома к атому. Такие электроны называются свободными. Именно они обеспечивают перенос заряда (проводимость).

    В диэлектриках практически нет свободных электронов, некому переносить заряд, следовательно, практически нет проводимости.

    : Следовательно, по электрическим свойствам все вещества можно разделить на два вида.

    Диэлектрики

    – вещества, не имеющие свободных зарядов и, поэтому, не позволяющие заряду одного тела "перетекать" на другие тела.

    Проводники

    – тела и вещества, в которых существуют свободные заряженные частицы; они могут перемещаться, перенося заряд в другие части тела или к другим телам.

    Мы понимаем, что пластмасса, из которой изготовлена линейка, является диэлектриком, а металлическая проволока – проводником.

    : Демонстрация показала, что при любых взаимодействиях, связанных с возникновением и переходом заряда от одних тел к другим, суммарный заряд всех участвующих в этом тел остается постоянным.

    Это утверждение выражает закон сохранения электрического заряда.

    |q 1 |+ |q 2 |+ |q 3 |+…..+ |q n | =0

    Во всех явлениях электризации тел суммарный электрический заряд сохраняется.

    Если одно тело приобретает положительный электрический заряд, то второе тело тоже приобретает равный по модулю отрицательный

    III. Запись домашнего задания

    Параграфы: 25, 26,27 вопросы стр.60, стр. 63

    Дополнительно: изготовить самодельный прибор - электроскоп.

    IV. Закрепление изученного материала

    Блиц-опрос

  • Как продемонстрировать, что расческа или авторучка способна притягивать легкие предметы?
  • (продемонстрировать)

  • Наэлектризованный предмет способен притягивать не только твердые тела, но и...
  • Как ведут себя два тела, одно из которых наэлектризовано, а второе - нет?
  • (продемонстрировать)

  • Как взаимодействуют два тела, наэлектризованные трением друг о друга?
  • (продемонстрировать)

  • Как проявляется электрическое взаимодействие наэлектризовавшейся одежды?
  • Как называются приборы, предназначенные для обнаружения наэлектризованных тел?
  • (продемонстрировать)

  • Какой существует еще вид электризации, кроме электризации трением?
  • (продемонстрировать)

  • Как взаимодействуют эбонит и шерсть, наэлектризованные друг о друга?
  • (продемонстрировать)

  • Как взаимодействуют стекло и шелк, наэлектризованные друг о друга?
  • (продемонстрировать)

  • Что является единицей измерения заряда?
  • Почему заряд тела нельзя делить бесконечно?
  • V. Подведение итогов. Выставление оценок

    Ответьте на вопрос, достигли ли мы цели нашего урока.

    Оценка учителем работы учащихся с комментариями.

    Алмаз — самый твёрдый минерал, кубическая полиморфная (аллотропная) модификация углерода(C), устойчивая при высоком давлении. При атмосферном давлении и комнатной температуре метастабилен, но может существовать неограниченно долго, не превращаясь в стабильный в этих условиях графит. В вакууме или в инертном газе при повышенных температурах постепенно переходит в графит.

    Смотрите так же:

    СТРУКТУРА

    Сингония алмаза кубическая, пространственная группа Fd3m. Элементарная ячейка кристаллической решетки алмаза представляет собой гранецентрированный куб, в котором в четырех секторах расположенных в шахматном порядке, находятся атомы углерода. Иначе алмазную структуру можно представить как две кубических гранецентрированных решетки, смещенных друг относительно друга по главной диагонали куба на четверть её длины. Структура аналогичная алмазной установлена у кремния, низкотемпературной модификации олова и некоторых других простых веществ.

    Кристаллы алмаза всегда содержат различные дефекты кристаллической структуры (точечные, линейные дефекты, включения, границы субзерен и тп.). Такие дефекты в значительной степени определяют физические свойства кристаллов.

    СВОЙСТВА

    Алмаз может быть бесцветными водянопрозрачным или окрашенным в различные оттенки желтого, коричневого, красного, голубого, зеленого, черного, серого цветов.
    Распределение окраски часто неравномерное, пятнистое или зональное. Под действием рентгеновских, катодных и ультрафиолетовых лучей большинство алмазов начинает светиться (люминесцировать) голубым, зелёным, розовым и др. цветами. Характеризуется исключительно высоким светопреломлением. Показатель преломления (от 2,417 до 2,421) и сильная дисперсия (0,0574) обуславливают яркий блеск и разноцветную «игру» огранённых ювелирных алмазов, называемых бриллиантами. Блеск сильный, от алмазного до жирного.Плотность 3,5 г/см 3 . По шкале Мооса относительная твердость алмаза равна 10, а абсолютная — в 1000 раз превышает твёрдость кварца и в 150 раз — корунда. Она самая высокая как среди всех природных, так и искусственных материалов. Вместе с тем довольно хрупок, легко раскалывается. Излом раковистый. С кислотами и щелочами в отсутствие окислителей не взаимодействует.
    На воздухе алмаз сгорает при 850° С с образованием СО 2 ; в вакууме при температуре свыше 1.500° С переходит в графит.

    МОРФОЛОГИЯ

    Морфология алмаза очень разнообразна. Он встречается как в виде монокристаллов, так и в виде поликристаллических срастаний («борт», «баллас», «карбонадо»). Алмазы из кимберлитовых месторождений имеют только одну распространенную плоскогранную форму — октаэдр. При этом во всех месторождениях распространены алмазы с характерными кривогранными формами — ромбододекаэдроиды (кристаллы похожие на ромбододекаэдр, но с округлыми гранями), и кубоиды (кристаллы с криволинейной формой). Как показали экспериментальные исследования и изучение природных образцов в большинстве случаев кристаллы в форме додекаэдроида возникают в результате растворения алмазов кимберлитовым расплавом. Кубоиды образуются в результате специфического волокнистого роста алмазов по нормальному механизму роста.

    Синтетические кристаллы, выращенные при высоких давлениях и температурах, часто имеют грани куба и это является одни их характерных отличий от природных кристаллов. При выращивании в метастабильных условиях алмаз легко кристаллизуется в виде пленок и шестоватых агрегатов.

    Размеры кристаллов варьируют от микроскопических до очень крупных, масса самого крупного алмаза «Куллинан», найденного в 1905г. в Южной Африке 3106 карат (0,621кг).
    На изучение огромного алмаза было потрачено несколько месяцев и в 1908 году он был расколот на 9 крупных частей.
    Алмазы массой более 15 карат — редкость, а массой от сотни карат — уникальны и считаются раритетами. Такие камни очень редки и часто получают собственные имена, мировую известность и своё особое место в истории.

    ПРОИСХОЖДЕНИЕ

    Хотя при нормальных условиях алмаз метастабилен, он в силу устойчивости своей кристаллической структуры может существовать неопределенно долго, не превращаясь в устойчивую модификацию углерода — графит. Алмазы, которые вынесены на поверхность кимберилитами или лампроитами кристаллизуется в мантии на глубине 200 км. и более при давлении более 4 Гпа и температуре 1000 — 1300 ° С. В некоторых меторождениях встречаются и более глубинные алмазы, вынесенные из переходной зоны или из нижней мантии. Наряду с этим, они выносятся к поверхности Земли в результате взрывных процессов, сопровождающих формирование кимберлитовых трубок, 15-20% которых содержит алмаз.

    Алмазы встречаются также в метаморфических комплексах сверхвысоких давлений. Они ассоциируют с эклогитами и глубокометаморфизованными гранатовыми гнейсами. Мелкие алмазы в значительных количествах обнаружены в метеоритах. Они имеют очень древнее, досолнечное происхождение. Также они образуются в крупных астроблемах — гигантских метеоритных кратерах, где переплавленные породы содержат значительные количества мелкокристаллического алмаза. Известным месторождением такого типа является Попигайская астроблема на севере Сибири.

    Алмазы редкий, но вместе с тем довольно широко распространённый минерал. Промышленные месторождения алмазов известны всех континентах, кроме Антарктиды. Известно несколько видов месторождений алмазов. Уже несколько тысяч лет алмазы добывались из россыпных месторождений. Только к концу XIX века, когда впервые были открыты алмазоносные кимберлитовая трубка, стало ясно, что алмазы не образуются в речных отложениях. Кроме этого алмазы были найдены в коровых породах в ассоциациях метаморфизма сверхвысоких давлений, например в Кокчетавском массиве в Казахстане.

    И импактные, и метаморфические алмазы иногда образуют весьма масштабные месторождения, с большими запасами и высокой концентрацией. Но в этих типах месторождений алмазы настолько мелкие, что не имеют промышленной ценности. Промышленные месторождения алмазов связаны с кимберлитовыми и лампроитовыми трубками, приуроченными к древним кратонам. Основные месторождения этого типа известны в Африке, России, Австралии и Канаде.

    ПРИМЕНЕНИЕ

    Хорошие кристаллы подвергаются огранке и используются в ювелирном деле. Ювелирными считаются около 15% добываемых алмазов, еще 45% считаются околоювелирными, то есть уступают ювелирным по размеру, цвету или чистоте. В настоящее время общемировой объем добычи алмазов составляет порядка 130 миллионов карат в год.
    Бриллиант (от франц. brillant — блестящий), — алмаз, которому посредством механической обработки (огранки) придана специальная форма, бриллиантовая огранка, максимально раскрывающая такие оптические свойства камня, как блеск и цветовая дисперсия.
    Совсем мелкие алмазы и осколки, непригодные для огранки, идут в качестве абразива для изготовления алмазного инструмента, необходимого для обработки твёрдых материалов и огранки самих алмазов. Скрытокристаллическая разновидность алмаза чёрного или тёмно-серого цвета, образующая плотные или пористые агрегаты, носит название Карбонадо , обладает более высоким сопротивлением истиранию, чем у кристаллов алмаза и благодаря этому особенно ценится в промышленности.

    Мелкие кристаллы также в больших количествах выращиваются искусственным путём. Синтетические алмазы получают из различных углеродсодержащих веществ, главным образом из графита, в спец. аппаратах при 1200-1600°С и давлениях 4,5-8,0 ГПа в присутствии Fe, Co, Сr, Мn или их сплавов. Они пригодны для использования только в технических целях.

    Алмаз (англ. Diamond) — C

    КЛАССИФИКАЦИЯ

    Strunz (8-ое издание) 1/B.02-40
    Dana (7-ое издание) 1.3.5.1
    Dana (8-ое издание) 1.3.6.1
    Hey’s CIM Ref. 1.24

    ФИЗИЧЕСКИЕ СВОЙСТВА

    Цвет минерала бесцветный, желтовато-коричневый переходящий в жёлтый, коричневый, чёрный, синий, зелёный или красный, розовый, коньячно-коричневый, голубой, сиреневый (очень редко)
    Цвет черты никакой
    Прозрачность прозрачный, полупрозрачный, непрозрачный
    Блеск алмазный, жирный
    Спайность совершенная по октаэдру
    Твердость (шкала Мооса) 10
    Излом неровный
    Прочность хрупкий
    Плотность (измеренная) 3.5 — 3.53 g/cm3
    Радиоактивность (GRapi) 0
    Термические свойства Высокая теплопроводность. На ощупь холодный, поэтому алмаз называют на сленге «лед»


    Поддержите проект — поделитесь ссылкой, спасибо!
    Читайте также
    Выкройка женского пальто: построение Выкройка женского пальто: построение Как быстро растут волосы Как быстро растут волосы Список полезных и лучших масел для лечения и оздоровления волос Список полезных и лучших масел для лечения и оздоровления волос