Как рассчитать кинетическую энергию. Энергия

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Энергия - важнейшее понятие в механике. Что такое энергия. Существует множество определений, и вот одно из них.

Что такое энергия?

Энергия - это способность тела совершать работу.

Рассмотрим тело, которое двигалось под действием каких-то сил изменило свою скорость с v 1 → до v 2 → . В этом случае силы, действующие на тело, совершили определенную работу A .

Работа всех сил, действующих на тело, равна работе равнодействующей силы.

F р → = F 1 → + F 2 →

A = F 1 · s · cos α 1 + F 2 · s · cos α 2 = F р cos α .

Установим связь между изменением скорости тела и работой, совершенной действующими на тело силами. Для простоты будем считать, что на тело действует одна сила F → , направленная вдоль прямой линии. Под действием этой силы тело движется равноускоренно и прямолинейно. В этом случае векторы F → , v → , a → , s → совпадают по направлению и их можно рассматривать как алгебраические величины.

Работа силы F → равна A = F s . Перемещение тела выражается формулой s = v 2 2 - v 1 2 2 a . Отсюда:

A = F s = F · v 2 2 - v 1 2 2 a = m a · v 2 2 - v 1 2 2 a

A = m v 2 2 - m v 1 2 2 = m v 2 2 2 - m v 1 2 2 .

Как видим, работа, совершенная силой, пропорционально изменению квадрата скорости тела.

Определение. Кинетическая энергия

Кинетическая энергия тела равна половине произведения массы тела на квадрат его скорости.

Кинетическая энергия - энергия движения тела. При нулевой скорости она равна нулю.

Теорема о кинетической энергии

Вновь обратимся к рассмотренному примеру и сформулируем теорему о кинетической энергии тела.

Теорема о кинетической энергии

Работа приложенной к телу силы равна изменению кинетической энергии тела. Данное утверждение справедливо и тогда, когда тело движется под действием изменяющейся по модулю и направлению силы.

A = E K 2 - E K 1 .

Таким образом, кинетическая энергия тела массы m , движущегося со скоростью v → , равна работе, которую сила должна совершить, чтобы разогнать тело до этой скорости.

A = m v 2 2 = E K .

Чтобы остановить тело, нужно совершить работу

A = - m v 2 2 =- E K

Кинетическая энергия - это энергия движения. Наряду с кинетической энергией есть еще потенциальная энергия, то есть энергия взаимодействия тел, которая зависит от их положения.

Например, тело поднято над поверхностью земли. Чем выше оно поднято, тем больше будет потенциальная энергия. Когда тело падает вниз под действием силы тяжести, эта сила совершает работу. Причем работа силы тяжести определяется только вертикальным перемещением тела и не зависит от траектории.

Важно!

Вообще о потенциальной энергии можно говорить только в контексте тех сил, работа которых не зависит от формы траектории тела. Такие силы называются консервативными.

Примеры консервативных сил: сила тяжести, сила упругости.

Когда тело движется вертикально вверх, сила тяжести совершает отрицательную работу.

Рассмотрим пример, когда шар переместился из точки с высотой h 1 в точку с высотой h 2 .

При этом сила тяжести совершила работу, равную

A = - m g (h 2 - h 1) = - (m g h 2 - m g h 1) .

Эта работа равна изменению величины m g h , взятому с противоположным знаком.

Величина Е П = m g h - потенциальна энергия в поле силы тяжести. На нулевом уровне (на земле) потенциальная энергия тела равна нулю.

Определение. Потенциальная энергия

Потенциальная энергия - часть полной механической энергии системы, находящейся в поле консервативных сил. Потенциальная энергия зависит от положения точек, составляющих систему.

Можно говорить о потенциальной энергии в поле силы тяжести, потенциальной энергии сжатой пружины и т.д.

Работа силы тяжести равна изменению потенциальной энергии, взятому с противоположным знаком.

A = - (E П 2 - E П 1) .

Ясно, что потенциальная энергия зависит от выбора нулевого уровня (начала координат оси OY). Подчеркнем, что физический смысл имеет изменение потенциальной энергии при перемещении тел друг относительно друга. При любом выборе нулевого уровня изменение потенциальной энергии будет одинаковым.

При расчете движения тел в поле гравитации Земли, но на значительных расстояниях от нее, во внимание нужно принимать закон всемирного тяготения (зависимость силы тяготения от расстояния до цента Земли). Приведем формулу, выражающую зависимость потенциальной энергии тела.

E П = - G m M r .

Здесь G - гравитационная постоянная, M - масса Земли.

Потенциальная энергия пружины

Представим, что в первом случае мы взяли пружину и удлинили ее на величину x . Во втором случае мы сначала удлинили пружину на 2 x , а затем уменьшили на x . В обоих случаях пружина оказалась растянута на x , но это было сделано разными способами.

При этом работа силы упругости при изменении длины пружины на x в обоих случаях была одинакова и равна

A у п р = - A = - k x 2 2 .

Величина E у п р = k x 2 2 называется потенциальной энергией сжатой пружины. Она равна работе силы упругости при переходе из данного состояния тела в состояние с нулевой деформацией.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Способность или возможность физических тел производить работу характеризуется базовым для всех разделов физики понятием, которое называется энергией. В зависимости от первоначального источника различают разные виды энергии: механическую, внутреннюю, электромагнитную, ядерную, гравитационную, химическую. Механическая энергия бывает двух видов: потенциальная и кинетическая. Кинетическая энергия присуща только движущимся телам. Можно ли тогда говорить о кинетической энергии покоя?

Чему равна кинетическая энергия

Вспомним как вычисляется кинетическая энергия. Если на тело массы m действует сила F , то его скорость v начнет изменяться. При перемещении тела на расстояние s , будет совершена работа A :

$ A = F * s $ (1)

По второму закону Ньютона сила равна:

$ F = m * a $ (2)

где a — ускорение.

Из известных формул, полученных в разделе механики, следует, что модуль смещения s при равноускоренном прямолинейном движении связан с модулями конечной v 2 , начальной v 1 скоростей и ускорения a следующей формулой;

$ s = {{v_2^2-v_1^2}\over {2*a}} $ (3)

Тогда можно получить формулу для вычисления работы:

$ A = F * s = m * a * {{v_2^2 – v_1^2}\over 2*a} = {m * v_2^2\over 2} -{m*v_1^2\over 2} $ (4)

Величина, равная произведению массы тела m на квадрат его скорости, деленный пополам называется кинетической энергией тела E k :

$ E_k = {m * v^2\over 2} $ (5)

Из формул (4) и (5) следует, что работа A равна:

$ A = E_{k2} – E_{k1} $ (6)

Таким образом, работа, совершенная силой, приложенной к телу оказалась равна изменению кинетической энергии тела. Значит любое физическое тело движущееся с ненулевой скоростью, обладает кинетической энергией. Следовательно, в состоянии покоя, при скорости v равной нулю и кинетическая энергия покоя будет также равна нулю.

Рис. 1. Примеры кинетической энергии:.

Неподвижное тело и температура

Любое физическое тело состоит из атомов и молекул, которые находятся в состоянии непрерывного хаотического движения при температуре T , не равной нулю. С помощью молекулярно-кинетической теории доказано, что средняя кинетическая энергии Е к хаотического движения молекул зависит только от температуры. Так для одноатомного газа эта связь выражается формулой:

$ Е_к = { 3 \over 2} * k * T $ (7)

где: k = 1,38*10 -23 Дж/К — постоянная Больцмана.

Таким образом, когда тело как целое покоится, каждая молекулы и атомы, из которых оно состоит, тем не менее могут иметь ненулевую кинетическую энергию.

Рис. 2. Хаотическое движение молекул в газе, жидкости, твердом теле:.

Температура абсолютного нуля естественно равна 0 0 К или -273,15 0 С. Ученые, работающие в этой области, стремятся охладить вещество до этого значения температуры с целью получения новых знаний. Пока рекордно низкая температура, полученная в лабораторных условиях выше абсолютного нуля всего на 5,9*10 -12 К. Для достижения таких значений используются лазеры и магнитное охлаждение.

Энергия покоя

Формула (5) для кинетической энергии справедлива для скоростей много меньших скорости света с , которая равна 300000 км/с. Альберт Эйнштейн (1879-1955г.г.) создал специальную теорию относительности, в которой кинетическая энергия Е к частицы массой m 0 , движущейся со скоростью v , есть:

$ Е_к = m_0 * с^2\over \sqrt{1 – {v^2\over c^2}} – m_0 * с^2 $ (8)

При скорости v много меньше скорости света с (v << c ) формула (8) переходит в классический вид, т.е. в формулу (5).

При v = 0 кинетическая энергия будет тоже равна нулю. Однако полная энергия Е 0 будет равна:

$ E_0 = m_0 * с^2 $ (9)

Выражение $m_0*с^2$ называется энергией покоя. Существование не равной нулю энергии у покоящегося тела означает, что физическое тело обладает энергией благодаря своему существованию.

Рис. 3. Портрет Альберта Эйнштейна:.

По Эйнштейну — сумма энергии покоя (9) и кинетической энергии (8) дает полную энергию частицы E п :

$ Eп = m_0 * с^2\over \sqrt{1 – v^2\over c^2} = m * c^2 $ (10)

Формула (10) показывает связь между массой тела его энергией. Оказывается, изменение массы тела приводит к изменению его энергии.

Что мы узнали?

Итак, мы узнали, что кинетическая энергия покоя обычного физического тела (или частицы) равна нулю, т.к. его скорость равна нулю. Кинетическая энергия частиц, из которых состоит покоящегося тело будет отлична от нуля, если его абсолютная температура не равна нулю. Отдельной формулы кинетической энергии покоя не существует. Для определения энергии покоящегося тела допустимо использование выражений (7) – (9), имея в виду, что это внутренняя энергия частиц, составляющих тело.

Тест по теме

Оценка доклада

Средняя оценка: 4.2 . Всего получено оценок: 39.

Сообщение от администратора:

Ребята! Кто давно хотел выучить английский?
Переходите по и получите два бесплатных урока в школе английского языка SkyEng!
Занимаюсь там сам - очень круто. Прогресс налицо.

В приложении можно учить слова, тренировать аудирование и произношение.

Попробуйте. Два урока бесплатно по моей ссылке!
Жмите

Кинетическая энергия - скалярная физическая величи­на, равная половине произведения массы тела на квадрат его скорости.

Что бы понять, что же такое кинетическая энергия тела, рассмотрим случай, когда тело массой m под действием постоянной силы (F=const) движется прямолинейно равноускоренно (а=const). Определим работу силы, приложенной к телу, при изменении модуля скорости этого тела от v1 до v2.

Как мы знаем, работа постоянной силы вычисляют по формуле . Так как в рассматриваемом нами случае направление силы F и перемещения s совпадают, то , и тогда у нас получается, что работа силы равна А=Fs. По второму закону Ньютона найдем силу F=ma. Для прямолинейного равноускоренного движения справедлива формула:

Из это формулы мы выражаем перемещение тела:

Подставляем найденные значения F и S в формулу работы, и получаем:

Из последней формулы видно, что работа силы, приложенной к телу, при изменении скорости этого тела равна разности двух значений некоторой величины . А механическая работа это и есть мера изменения энергии. Следовательно, в правой части формулы стоит разность двух значений энергии данного тела. Это значит, что величина представляет собой энергию, обусловленную движением тела. Эту энергию называют кинетической. Она обозначается Wк.

Если взять выведенную нами формулу работы, то у нас получится

Работа, совершаемая силой при изменении скорости тела, равна изменению кинетической энергии этого тела

Так же есть:

Потенциальная энергия:

В формуле мы использовали:

Кинетическая энергия

Повседневный опыт показывает, что недвижимые тела можно привести в движение, а движимые остановить. Мы с вами постоянно что-то делаем, мир вокруг суетится, светит солнце... Но откуда у человека, животных, да и у природы в целом берутся силы для выполнения этой работы? Исчезает ли бесследно? Начнет ли двигаться одно тело без изменения движения другого? Обо всем этом мы расскажем в нашей статье.

Понятие энергии

Для работы двигателей, которые придают движение автомобилям, тракторам, тепловозам, самолетам, нужно топливо, которое является источником энергии. Электродвигатели придают движение станкам при помощи электроэнергии. За счет энергии воды, падающей с высоты, оборачиваются гидротурбины, соединенные с электрическими машинами, производящими электрический ток. Человеку для того, чтобы существовать и работать, также нужна энергия. Говорят, что для того, дабы выполнять какую-нибудь работу, необходима энергия. Что же такое энергия?

  • Наблюдение 1. Поднимем над землей мяч. Пока он пребывает в состоянии спокойствия, механическая работа не выполняется. Отпустим его. Под действием силы тяжести мяч падает на землю с определенной высоты. Во время падения мяча выполняется механическая работа.
  • Наблюдение 2. Сомкнем пружину, зафиксируем ее нитью и поставим на пружину гирьку. Подожжем нить, пружина распрямится и поднимет гирьку на некую высоту. Пружина выполнила механическую работу.
  • Наблюдение 3. На тележку закрепим стержень с блоком в конце. Через блок перекинем нить, один конец которой намотан на ось тележки, а на другом висит грузик. Отпустим грузик. Под действием он будет опускаться книзу и придаст тележке движение. Грузик выполнил механическую работу.

После анализа всех вышеперечисленных наблюдений можно сделать вывод, что если тело или несколько тел во время взаимодействия выполняют механическую работу, то говорят, что они имеют механическую энергию, либо энергию.

Понятие энергии

Энергия (от греч. слова энергия - деятельность) - это физическая величина, которая характеризирует способность тел выполнять работу. Единицей энергии, а также и работы в системе СИ является один Джоуль (1 Дж). На письме энергия обозначается буквой Е . Из вышеуказанных экспериментов видно, что тело выполняет работу тогда, когда переходит из одного состояния в другое. Энергия тела при этом меняется (уменьшается), а выполненная телом механическая работа равна результату изменения ее механической энергии.

Виды механической энергии. Понятие потенциальной энергии

Различают 2 вида механической энергии: потенциальную и кинетическую. Сейчас подробнее рассмотрим потенциальную энергию.

Потенциальная энергия (ПЭ) - определяющаяся взаимным положением тел, которые взаимодействуют, либо частями того самого тела. Поскольку любое тело и земля притягивают друг друга, то есть взаимодействуют, ПЭ тела, поднятого над землей, будет зависеть от высоты поднятия h . Чем выше поднято тело, тем больше его ПЭ. Экспериментально установлено, что ПЭ зависит не только от высоты, на которую оно поднято, но и от массы тела. Если тела были подняты на одинаковую высоту, то тело, имеющее большую массу, будет иметь и большую ПЭ. Формула данной энергии выглядит следующим образом: E п = mgh, где E п - это потенциальна энергия, m - масса тела, g = 9,81 Н/кг, h - высота.

Потенциальная энергия пружины

Тела называют физическую величину E п, которая при изменении скорости поступательного движения под действием уменьшается ровно на столько, на сколько растет кинетическая энергия. Пружины (как и другие упруго деформированные тела) имеют такую ПЭ, которая равна половине произведения их жесткости k на квадрат деформации: x = kx 2: 2.

Энергия кинетическая: формула и определение

Иногда значение механической работы можно рассматривать без употребления понятий силы и перемещения, акцентировав внимание на том, что работа характеризует изменение энергии тела. Все, что нам может потребоваться, - это масса некоего тела и его начальная и конечная скорости, что приведет нас к кинетической энергии. Кинетическая энергия (КЭ) - это энергия, принадлежащая телу вследствие собственного движения.

Кинетическую энергию имеет ветер, ее используют для придания движения ветряным двигателям. Движимые оказывают давление на наклонные плоскости крыльев ветряных двигателей и заставляют их оборачиваться. Вращательное движение при помощи систем передач передается механизмам, выполняющим определенную работу. Движимая вода, оборачивающая турбины электростанции, теряет часть своей КЭ, выполняя работу. Летящий высоко в небе самолет, помимо ПЭ, имеет КЭ. Если тело пребывает в состоянии покоя, то есть его скорость относительно Земли равна нулю, то и его КЭ относительно Земли равна нулю. Экспериментально установлено, что чем больше масса тела и скорость, с которой оно движется, тем больше его КЭ. Формула кинетической энергии поступательного движения в математическом выражении следующая:

Где К - кинетическая энергия, m - масса тела, v - скорость.

Изменение кинетической энергии

Поскольку скорость движения тела является величиной, зависящей от выбора системы отсчета, значение КЭ тела также зависит от ее выбора. Изменение кинетической энергии (ИКЭ) тела происходит вследствие действия на тело внешней силы F . Физическую величину А , которая равна ИКЭ ΔЕ к тела вследствие действия на него силы F, называют работой: А = ΔЕ к. Если на тело, которое движется со скоростью v 1 , действует сила F , совпадающая с направлением, то скорость движения тела вырастет за промежуток времени t к некоторому значению v 2 . При этом ИКЭ равно:

Где m - масса тела; d - пройденный путь тела; V f1 = (V 2 - V 1); V f2 = (V 2 + V 1); a = F: m . Именно по этой формуле высчитывается, на сколько изменяется энергия кинетическая. Формула также может иметь следующую интерпретацию: ΔЕ к = Flcos , где cosά является углом между векторами силы F и скорости V .

Средняя кинетическая энергия

Кинетическая энергия представляет собой энергию, определяемую скоростью движения разных точек, которые принадлежат этой системе. Однако следует помнить, что необходимо различать 2 энергии, характеризующие разные поступательное и вращательное. (СКЭ) при этом является средней разностью между совокупностью энергий всей системы и ее энергией спокойствия, то есть, по сути, ее величина - это средняя величина потенциальной энергии. Формула средней кинетической энергии следующая:

где k - это константа Больцмана; Т - температура. Именно это уравнение является основой молекулярно-кинетической теории.

Средняя кинетическая энергия молекул газа

Многочисленными опытами было установлено, что средняя кинетическая энергия молекул газа в поступательном движении при заданной температуре одна и та же, и не зависит от рода газа. Кроме того, было установлено также, что при нагревании газа на 1 о С СКЭ увеличивается на одно и то же самое значение. Сказать точнее, это значение равно: ΔЕ к = 2,07 х 10 -23 Дж/ о С. Для того чтобы вычислить, чему равна средняя кинетическая энергия молекул газа в поступательном движении, необходимо, помимо этой относительной величины, знать еще хотя бы одно абсолютное значение энергии поступательного движения. В физике достаточно точно определены эти значения для широкого спектра температур. К примеру, при температуре t = 500 о С кинетическая энергия поступательного движения молекулы Ек = 1600 х 10 -23 Дж. Зная 2 величины (ΔЕ к и Е к), мы можем как вычислить энергию поступательного движения молекул при заданной температуре, так и решить обратную задачу - определить температуру по заданным значениям энергии.

Напоследок можно сделать вывод, что средняя кинетическая энергия молекул, формулакоторой приведена выше, зависит только от абсолютной температуры (причем для любого агрегатного состояния веществ).

Закон сохранения полной механической энергии

Изучение движения тел под действием силы тяжести и сил упругости показало, что существует некая физическая величина, которую называют потенциальной энергией Е п ; она зависит от координат тела, а ее изменение приравнивается ИКЭ, которая взята с противоположным знаком: Δ Е п = -ΔЕ к. Итак, сумма изменений КЭ и ПЭ тела, которые взаимодействуют с гравитационными силами и силами упругости, равна 0 : Δ Е п + ΔЕ к = 0. Силы, которые зависят только от координат тела, называют консервативными. Силы притяжения и упругости являются консервативными силами. Сумма кинетической и потенциальной энергий тела является полной механической энергией: Е п + Е к = Е.

Этот факт, который был доказан наиболее точными экспериментами,
называют законом сохранения механической энергии . Если тела взаимодействуют силами, которые зависят от скорости относительного движения, механическая энергия в системе взаимодействующих тел не сохраняется. Примером сил такого типа, которые называются неконсервативными , являются силы трения. Если на тело действуют силы трения, то для их преодоления необходимо затратить энергию, то есть ее часть используется на выполнение работы против сил трения. Однако нарушение закона сохранения энергии здесь только мнимое, потому что он является отдельным случаем общего закона сохранения и преобразования энергии. Энергия тел никогда не исчезает и не появляется вновь: она лишь преобразуется из одного вида в другой. Этот закон природы очень важен, он выполняется повсюду. Его еще иногда называют общим законом сохранения и преобразования энергии.

Связь между внутренней энергией тела, кинетической и потенциальной энергиями

Внутренняя энергия (U) тела - это его полная энергия тела за вычетом КЭ тела как целого и его ПЭ во внешнем поле сил. Из этого можно сделать вывод, что внутренняя энергия состоит из КЭ хаотического движения молекул, ПЭ взаимодействия между ними и внутремолекулярной энергии. Внутренняя энергия - это однозначная функция состояния системы, что говорит о следующем: если система находится в данном состоянии, ее внутренняя энергия принимает присущие ему значения, независимо от того, что происходило ранее.

Релятивизм

Когда скорость тела близка к скорости света, кинетическую энергию находят по следующей формуле:

Кинетическая энергия тела, формула которой была написана выше, может также рассчитываться по такому принципу:

Примеры задач по нахождению кинетической энергии

1. Сравните кинетическую энергию шарика массой 9 г, летящего со скоростью 300 м/с, и человека массой 60 кг, бегущего со скоростью 18 км/час.

Итак, что нам дано: m 1 = 0,009 кг; V 1 = 300 м/с; m 2 = 60 кг, V 2 = 5 м/с.

Решение:

  • Энергия кинетическая (формула): Е к = mv 2: 2.
  • Имеем все данные для расчета, а поэтому найдем Е к и для человека, и для шарика.
  • Е к1 = (0,009 кг х (300 м/с) 2) : 2 = 405 Дж;
  • Е к2 = (60 кг х (5 м/с) 2) : 2= 750 Дж.
  • Е к1 < Е к2.

Ответ: кинетическая энергия шарика меньше, чем человека.

2. Тело с массой 10 кг было поднято на высоту 10 м, после чего его отпустили. Какую КЭ оно будет иметь на высоте 5 м? Сопротивлением воздуха разрешается пренебречь.

Итак, что нам дано: m = 10 кг; h = 10 м; h 1 = 5 м; g = 9,81 Н/кг. Е к1 - ?

Решение:

  • Тело определенной массы, поднятое на некую высоту, имеет потенциальную энергию: E п = mgh. Если тело падает, то оно на некоторой высоте h 1 будет иметь пот. энергию E п = mgh 1 и кин. энергию Е к1. Чтобы была правильно найдена энергия кинетическая, формула, которая была приведена выше, не поможет, а поэтому решим задачу по нижеследующему алгоритму.
  • В этом шаге используем закон сохранения энергии и запишем: Е п1 + Е к1 = Е п.
  • Тогда Е к1 = Е п - Е п1 = mgh - mgh 1 = mg(h-h 1).
  • Подставив наши значения в формулу, получим: Е к1 = 10 х 9,81(10-5) = 490,5 Дж.

Ответ: Е к1 = 490,5 Дж.

3. Маховик, имеющий массу m и радиус R, оборачивается вокруг оси, проходящей через его центр. Угловая скорость оборачивания маховика - ω . Дабы остановить маховик, к его ободу прижимают тормозную колодку, действующей на него с силой F трения . Сколько оборотов сделает маховик до полной остановки? Учесть, что масса маховика сосредоточена по ободу.

Итак, что нам дано: m; R; ω; F трения. N - ?

Решение:

  • При решении задачи будем считать обороты маховика подобными оборотам тонкого однородного обруча с радиусом R и массой m, который оборачивается с угловой скоростью ω.
  • Кинетическая энергия такого тела равна: Е к = (Jω 2) : 2, где J = mR 2 .
  • Маховик остановится при условии, что вся его КЭ истратится на работу по преодолению силы трения F трения, возникающей между тормозной колодкой и ободом: Е к = F трения *s , где 2 πRN = (mR 2 ω 2) : 2, откуда N = (mω 2 R) : (4πF тр).

Ответ: N = (mω 2 R) : (4πF тр).

В заключение

Энергия - это важнейшая составляющая во всех аспектах жизни, ведь без нее никакие тела не смогли бы выполнять работу, в том числе и человек. Думаем, статья вам внятно дала понять, что собой представляет энергия, а развернутое изложение всех аспектов одной из ее составляющих - кинетической энергии - поможет вам осознать многие процессы, происходящих на нашей планете. А уж о том, как найти кинетическую энергию, вы можете узнать из приведенных выше формул и примеров решения задач.

А4. Какие изменения отмечает человек в звуке при увеличении частоты колебаний в звуковой волне?
1) Повышение высоты тона
2) Понижение высоты тона
3) Увеличение громкости
4) Уменьшение громкости

А5. Расстояния от двух когерентных источников волн до точки М равны а и b. Разность фаз колебаний источников равна нулю, длина волны равна l. Если излучает только один источник волн, то амплитуда колебаний частиц среды в точке М равна А1, если только второй, то – А2. Если разность хода волн a – b =3l/2 , то в точке М амплитуда суммарного колебания частиц среды
1) равна нулю 2) равна | А1 – А2| 3) равна | А1 + А2|
4) меняется со временем периодически

А6. Выберите правильное утверждение.
А. Опираясь на эксперименты Фарадея по исследованию электромагнитной индукции, Максвелл теоретически предсказал существование электромагнитных волн.
В. Опираясь на теоретические предсказания Максвелла, Герц обнаружил электромагнитные волны экспериментально.
С. Опираясь на эксперименты Герца по исследованию электромагнитных волн, Максвелл создал теорию их распространения в вакууме.
1) Только А и В 2) Только А и С 3) Только В и С 4) И А, и В, и С

А7. Какое утверждение верно?
В теории электромагнитного поля Максвелла
А – переменное электрическое поле порождает вихревое магнитное поле
Б – переменное магнитное поле порождает вихревое электрическое поле

А8. В одной научной лаборатории для ускорения заряженных частиц используется линейный ускоритель, а во второй – циклотрон, в котором частицы разгоняются, двигаясь по спиралевидной траектории. В какой из лабораторий следует учесть возможность возникновения опасных для человека электромагнитных излучений.
1) Только в первой 2) Только во второй 3) В обеих лабораториях
4) Ни в одной из лабораторий

А9. Какое утверждение правильное?
Излучение электромагнитных волн происходит при
А – движении электрона в линейном ускорителе
Б – колебательном движении электронов в антенне
1) Только А 2) Только Б 3) И А, и Б 4) Ни А, ни Б

А10. Заряженная частица не излучает электромагнитные волны в вакууме
1) равномерном прямолинейном движении
2) равномерном движении по окружности
3) колебательном движении
4) любом движении с ускорением

А11. Скорость распространения электромагнитных волн
1) имеет максимальное значение в вакууме
2) имеет максимальное значение в диэлектриках
3) имеет максимальное значение в металлах
4) одинакова в любых средах

А12. В первых экспериментах по изучению распространения электромагнитных волн в воздухе были измерены длина волны см и частота излучения МГц. На основе этих неточных экспериментов было получено значение скорости света в воздухе, равное примерно
1) 100000 км/с 2) 200000 км/с 3) 250000 км/с 4) 300000 км/с

А13. Колебания электрического поля в электромагнитной волне описываются уравнением: Е=10sin(107t). Определите частоту колебаний (в Гц).
1) 107 2) 1,6 *106 3)(107 t) 4) 10

А14. При распространении электромагнитной волны в вакууме
1) происходит только перенос энергии
2) происходит только перенос импульса
3) происходит перенос и энергии, и импульса
4) не происходит переноса ни энергии, ни импульса

А15. При прохождении электромагнитной волны в воздухе происходят колебания
1) молекул воздуха
2) плотности воздуха
3) напряжённости электрического и индукции магнитного полей
4) концентрации кислорода

А16. Явлением, доказывающим, что в электромагнитной волне вектор напряжённости электрического поля колеблется в направлении, перпендикулярном направлению распространению электромагнитной волны, является
1) интерференция 2) отражение 3) поляризация 4) дифракция

А17. Укажите сочетание тех параметров электромагнитной волны, которые изменяются при переходе волны из воздуха в стекло
1) скорость и длина волны 2) частота и скорость
3) длина волны и частота 4) амплитуда и частота

А18. Какое явление характерно для электромагнитных волн, но не является общим свойством волн любой природы?
1) интерференция 2) преломление 3) поляризация 4) дифракция

А19. На какую длину волны нужно настроить радиоприемник, чтобы слушать радиостанцию «Европа+», которая вещает на частоте 106,2 МГц?
1) 2,825 дм 2) 2,825 см 3) 2,825 км 4) 2,825 м

А20. Амплитудная модуляция высокочастотных электромагнитных колебаний в радиопередатчике используется для
1) увеличения мощности радиостанции
2) изменения амплитуды высокочастотных колебаний
3) изменения амплитуды колебаний звуковой частоты
4) задания определенной частоты излучения данной радиостанции



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Веселая цифра 7. Стихи про семью. Маме с папой посвящаю Веселая цифра 7. Стихи про семью. Маме с папой посвящаю Конспект по развитию речи в старшей группе на тему “Литературный калейдоскоп” Конспект по развитию речи в старшей группе на тему “Литературный калейдоскоп” Конспект по развитию речи в старшей группе на тему “Литературный калейдоскоп” Конспект по развитию речи в старшей группе на тему “Литературный калейдоскоп” Красивые цитаты для одноклассников Красивые цитаты для одноклассников