Иммунологические связи системы мать плод. Взаимоотношения материнского организма и плода

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Регулярные адаптивные изменения иммунной реактивности являются основой выживания организма в постоянно меняющемся внешнем мире. В разные периоды жизни (детство, старость, при беременности) или в особых случаях происходят существенные вариации выраженности иммунных механизмов (активация одних, подавление других звеньев), что является физиологическими реакциями приспособления, а не свидетельством формирования каких-либо патологических процессов.

2.1. ИММУННАЯ РЕАКТИВНОСТЬ И БИОЛОГИЧЕСКИЕ РИТМЫ

Уже давно известны наследуемые циклические изменения жизнедеятельности организма, сохраняющиеся постоянно. Поскольку жизнь на Земле развивалась с самого начала в условиях неизменного чередования светлого и темного периода суток, холодного и теплого времени года, с разной продолжительностью периода освещенности, приливного и отливного циклов и т.д., эндогенные колебательные процессы, составляющие основу метаболизма отдельных клеток и клеточных систем, в том числе и иммунные, оказались связанными с периодом, близким к 24 ч, 1 мес, 1 году.

Известны околосуточные (циркадные) колебания параметров неспецифической антиинфекционной резистентности. Наибольшие показатели фагоцитоза и пропердина обнаружены в дневное и вечернее время, самые низкие - ночью и в утренние часы. Максимальное содержание лимфоцитов наблюдается в 24 ч, наименьшее - при пробуждении. Существует зависимость между выраженностью ответа лимфоидных клеток на стимуляцию ФГА, интенсивностью реакции розеткообразования, продукцией антител, концентрацией иммунных глобулинов и временем суток. По одним данным происходит заметное угнетение Т- и В-систем иммунитета утром и их активизация до предельных значений в полночь, по другим - суточная динамика содержания Т- и В-лимфоцитов носит противоположный характер. Установлена циркадная периодичность нахождения в циркуляции CD4+- и CD8+-лимфоцитов, натуральных киллеров. Возможно, эти колебания связаны с изменениями концентрации в крови кортикостероидов. Так, суточный ритм числа лимфоцитов в периферической крови находится в обратной связи с аналогичным ритмом кортикос-

тероидов в плазме крови и моче. Показано, что пик концентрации гормонов в крови совпадает с максимальным уровнем ответа лимфоцитов на ФГА и другие митогены. Суточный цикл иммунного ответа (по тесту кожной чувствительности к Аг) находится в противофазе к ритму экскреции кортизола с мочой. Наибольший уровень АТ и предельная выраженность аллергических реакций отмечается во время сна и минимальная - в бодрствующем состоянии.

Менее изучены сезонные (циркануальные) ритмы иммунной системы, обусловленные периодическими изменениями в окружающей среде и имеющие, как правило, геофизическую природу, т.е. связанные с ритмикой движения Земли в солнечной системе, ее вращением вокруг оси с соответствующей динамикой климата, температуры, влажности, светового режима, атмосферного давления, геомагнитных факторов и т.д. Существенно, что характер изменений функционирования иммунной системы взрослых и детей несколько различаются между собой.

Так, зимой у детей происходит максимальное накопление и активизация CD3-лимфоцитов, увеличение уровня IgG, IgM, CD19-кле- ток. Весной наблюдается угнетение Т-звена иммунитета (падение количества CD3-, CD4- и CD8 -лимфоцитов) при сохранении достаточно высокой концентрации IgG и уменьшение продукции IgM и числа CD19-лимфоцитов. Летом отмечается активизация Т-клеточных механизмов защиты и продолжение спада продукции IgG и CD19-клеток. Осенью регистрируется дальнейшая мобилизация всех защитных реакций, лишь резкое снижение содержания CD8+- лимфоцитов и продолжающееся монотонное угнетение образования IgM и IgG не вписывается в общую закономерность. Таким образом, летом, осенью и зимой угнетение одних звеньев защиты компенсируется активизацией других. Весной состояние иммунной системы, за исключением уровня IgG, оказывается подавленным в сравнении с другими периодами. Это, по-видимому, объясняется определенной незрелостью иммунной системы у детей. Динамика иммунных параметров у взрослых представляется более «целесообразной» и «безопасной». Например, осенью в Восточной Сибири у взрослых людей отмечается снижение выраженности факторов клеточного и стимуляция гуморального иммунитета. Зимой оба звена иммунитета активизируются. Весной стимулируются клеточные и подавляются гуморальные механизмы защиты, а летом ингибируются Т- и В-системы иммунитета и одновременно происходит компенсаторное повышение активности фагоцитоза.

Динамика гуморальных факторов неспецифической антиинфекционной резистентности также зависит от времени года. Максимальный уровень комплементарной активности сыворотки крови приходится на осень, а минимальный - определяется весной. Зимой и летом обнаружены близкие величины комплемента в сыворотке крови. Общее направление изменений β-лизинов в принципе повторяет динамику комплементарной активности с характерным снижением показателей в весеннее время. Минимальное значение уровня лизоцима в сыворотке крови регистрируется в зимнее время, а максимальный подъем активности фермента наблюдается летом.

Эффективность иммунокоррекции также оказалась зависимой от изменения иммунной реактивности организма. В определенных случаях она может быть даже альтернативной.

Наиболее выражены циркадные ритмы с июля по сентябрь - с декабря по март. Биологические ритмы инертны на Юге и весьма выражены на Севере. Особенно значительные сезонные изменения показателей неспецифической антиинфекционной устойчивости и иммунитета проявляются у лиц, находящихся в периоде адаптации к непривычным для себя климатогеографическим условиям. Так называемый географический стресс связан с возрастом людей. Например, у лиц, переехавших в районы с экстремальными условиями, вторичная иммунная недостаточность формируется в возрасте 40-49 лет в 57%, а в группах 20-25-летнего возраста - лишь в 11,3%.

2.2. ИММУННАЯ РЕАКТИВНОСТЬ ПРИ БЕРЕМЕННОСТИ

Иммунные механизмы включаются с первого момента зарождения жизни. Взаимодействие половых клеток обусловлено реакцией, напоминающей соединение Аг с АТ, фертилизина, расположенного на поверхности яйцеклетки, и антифертилизина, обнаруженного на сперматозоидах. Несмотря на существование физиологического барьера и наличия естественных толерогенных механизмов, семя самца все же иммунизирует самку. Это приводит к тому, что образовавшиеся иммуноглобулины элиминируют погибшие или ослабленные гаметы, снижая, таким образом, возможность участия в оплодотворении неполноценных или поврежденных сперматозоидов. Однако примерно в 10% случаев женского бесплодия спермоиммобилизины являются причиной патологии.

Иммунные взаимоотношения организма матери и плода характеризуется динамическим равновесием, при котором плод получает пас-

сивный иммунитет от матери и одновременно развивает собственную иммунную компетентность. В то же время мать поддерживает собственные иммунные потенции, не отторгая трофобласт и плод. В принципе, нормальная продолжительность беременности у большинства млекопитающих значительно превосходит время, необходимое для отторжения аллотрансплантатов. Поэтому нормальная беременность является своеобразным иммунным «парадоксом». Ни одна из теорий, постулирующая незрелость плода в антигенном отношении, не подтвердилась. Как оказалось, мать может приобретать повышенную чувствительность в процессе беременности к аллоантигенам эритроцитов, белков сыворотки крови, тромбоцитов, лейкоцитов плода. Органом, обусловливающим формирование биологического барьера между матерью и плодом, является плацента, в которой трофобласт, ткань плодного происхождения, выполняет функцию иммунологической буферной зоны, а аллоантигены замаскированы особыми мукопротеидами (серомукоидом, фибриноидом, сиаломуцином). У трофобласта имеются также выраженные толерогенные свойства, препятствующие развитию материнских иммунных реакций. Иммуносупрессорные свойства обусловливают некоторые вещества, находящиеся на поверхности плаценты, плацентарные гормоны: эстроген, прогестерон, кортикостероиды, трофобластные специфические Аг, а также альбумин, α-, β- и γ-глобулин, группоспецифические Аг, гистамин, α-1-фетопротеин, α-2-гликопротеин. Плацента выполняет функцию иммунологического барьера не только в пределах самого органа, но и вне его. К концу беременности в кровоток матери ежедневно поступает около 100000 клеток трофобласта. Они выполняют функцию Аг, сорбирующих в организме матери аллоантитела, то есть АТ, вырабатываемые против клеток плода. Считается, что матка является иммунологически привилегированным органом. Однако при внематочной беременности бластоциста может имплантироваться на различных органах брюшной полости (маточные трубы, кишечник, брюшина), которые становятся, таким образом, местами прикрепления плаценты. Это в определенном смысле не препятствует нормальному развитию плода. По-видимому, дело в трофобласте.

В конце первого - начале второго триместра беременности в системе «мать-плод» начинается «передача» иммуноглобулинов. При этом плацента ведет себя как орган, обладающий выраженной избирательной проницаемостью. Например, из пяти классов иммуноглобулинов трансплацентарный переход возможен лишь для IgG. Проходящие

через плаценту материнские АТ защищают плод, а затем и ребенка от инфекционных заболеваний, которые перенесла мать. Но в тех случаях, когда произошла иммунизация матери Аг плода, возникают патологические ситуации. Антиплацентарные АТ могут обусловить повышение проницаемости плаценты для органных Аг, а в ряде случаев и прерывание беременности.

Существуют и другие механизмы толерантности иммунной системы матери. Это неспособность ее макрофагов «передавать» («презентировать», «представлять») обработанный Аг плода иммунокомпетентным клеткам, отсутствие лимфоцитов, ответственных за иммунное взаимодействие с Аг плода, так называемый «дефект репертуара лимфоцитов».

Среди причин неотторжения плода определенная роль принадлежит блокирующим факторам материнской сыворотки. В ней обнаруженыпричины процессов, тормозящих развитие клеточных иммунных реакций против лимфоцитов плода и лимфоцитов отца ребенка. Лимфоциты беременных, лишенные компонентов собственной плазмы, в смешанной культуре развивают нормальный ответ на клетки плода, который подавляется добавлением сыворотки беременной. Наибольшая концентрация блокирующих факторов происходит в конце беременности, вскоре после родов они исчезают.

Как известно, в специфическом подавлении реакций отторжения принимают участие CD8-лимфоциты-супрессоры, комплексы Аг-АТ, содержание которых также увеличивается к концу беременности. Все указанные изменения развиваются на фоне значительного возрастания концентрации свободных и связанных с белком кортикостероидов, как известно, наделенных иммуносупрессорным действием. Существует и еще один механизм. Эмбриональные и плацентарные Аг, поступая в материнский кровоток в избыточном количестве, нейтрализуют вырабатываемые организмом беременной АТ и обусловливают таким образом специфическое подавление иммунного ответа. Подобная реакция может быть обусловлена и иммунными комплексами Аг-АТ. Она развивается только в отношении Аг плода, тогда как общая иммунная реактивность беременной женщины не меняется и ее организм способен адекватно отвечать на иммунизацию вакцинами, активно «бороться» с инфекциями. Однако определенные фазные изменения иммунной реактивности все же происходят. В первом триместре отмечается снижение относительного количества Т-клеток, а в третьем - В-лимфоцитов. В процессе беременности наблюдается

некоторое подавление способности отторгать кожный трансплантат и отвечать на стимуляцию митогенами Т-клеток. Одновременно при физиологическом течении беременности наблюдается увеличение относительного содержания CD8-лимфоцитов в периферической крови и происходит торможение активности макрофагов.

При формировании резус-конфликта возникает гемолитическая болезнь плода. Для ее профилактики практикуют введение сразу после родов резус-отрицательным женщинам, родившим резус-положительный плод, антиIgD иммуноглобулинов в дозе 300 мг (1,5мл). В случае массивного кровотечения вливают до 750 мг иммунного глобулина. Существует методика инъекции: 0,4 мл препарата до родов и 1 мл после них. Это обеспечивает почти 100% предупреждение резуссенсибилизации.

Более сложной задачей оказывается подавление аллоиммунных процессов, обусловливающих патологическое действие на плод в тех случаях, когда резус-сенсибилизация уже произошла. Таким женщинам рекомендуется применение плазмафереза, причем однократное изъятие крови составляет 400 мл. Допускается проведение до 12-15 подобных процедур, поскольку при этом не происходит какого-либо отягощения акушерского анамнеза.

Хорошо зарекомендовала себя иммуносорбция плазмы крови в сочетании с лейкоцитоферезом. Для этого забирается 250-400 мл крови, отбирается плазма, смешивается с равным объемом эритроцитов, нагруженных причинными Аг, инкубируется 20 мин при 37 о С, осаждается и вновь вводится пациентке. Общее число сеансов может достичь 2-15.

Перспективным является подсадка кожного лоскута отца ребенка. Кожа является одним из органов, наиболее насыщенных трансплантационными Аг, отвлекающими на себя иммуноагрессивные реакции. Технически операция осуществляется следующим образом: кожный лоскут размером 0,5-4 см 2 , взятый от мужа, на 8-16 нед имплантируется в подкожную клетчатку брюшной стенки матери. Критерием для отбора женщин служит резус-сенсибилизация и крайне отягощенный акушерский анамнез. Этот метод лечения в сочетании с традиционной комплексной терапией позволяет сохранить жизнь новорожденному.

В организме беременной женщины также происходит усиление спонтанной миграции макрофагов, возрастание уровня С3 компонента комплемента и некоторые другие изменения. При беременности,

осложненной угрозой прерывания (самопроизвольные выкидыши и преждевременные роды), отмечается увеличение экспрессии рецепторов ИЛ-2 на мононуклеарах периферической крови, возрастание уровня продукции ими ИЛ-1, накопление его в сыворотке крови, снижение иммуносупрессорного действия сыворотки крови. Также отмечается усиление РБТЛ на Т-, но не В-митогены. Все эти данные свидетельствуют о том, что фактически происходит активация иммунной реактивности, сопряженная со степенью выраженности симптомов прерывания беременности.

Если в организме женщины развивается иммунный конфликт, он оказывает неблагоприятное действие не только на плод, но и на мать. При позднем токсикозе отмечаются изменения клеточного и гуморального иммунитета, меняются соотношения субпопуляций лимфоцитов и концентрации иммунных глобулинов. Поздний токсикоз чаще развивается в том случае, когда женщины с 0(I) группой крови вынашивают плод с А(II) или В(III)группами крови. При тяжелых формах поздних токсикозов (предэклампсия) отмечается несовместимость по системе лейкоцитарных Аг (HLA). Изменения чаще наблюдаются в случае родственных браков, когда повышается частота общих аллоантигенов HLA у супругов, у матери и плода.

В последние годы установлено, что наиболее частой причиной привычного невынашивания беременности является совпадение матери и плода по двум и более локусам системы лейкоцитарных Аг.

Антигенные различия между материнским организмом и эмбрионом очень важны, так как чем выше степень генетической чужеродности, тем интенсивнее взаимодействуют ткани. При этом образуется плацента значительно более крупных размеров. Чем ярче выражены генетические различия между тканями матери и плода, тем активнее обмениваются медиаторами их клетки. В результате плод более приспособлен к постнатальной жизни.

2.3. ИММУННАЯ РЕАКТИВНОСТЬ У ДЕТЕЙ

Бытовавшие ранее представления об ареактивности организма ребенка раннего возраста ныне отвергнуты, поскольку установлено, что на любом этапе развития организм обладает определенным набором иммунных факторов, имеющих ряд особенностей, зависимых от возраста. При этом различают процесс закладки иммунной системы, реализацию ее потенциальных возможностей в развертывании специфических реакций и достижении зрелости.

Созревание иммунной реактивности плода

Тимус закладывается на 2 мес внутриутробной жизни в области третьего-четвертого жаберных карманов и вначале, на 6 нед, имеет выраженный эпителиальный характер. На 7-8 нед он «заселяется» лимфоцитоподобными клетками. К концу 3 мес формирование органа заканчивается. В дальнейшем в тимусе наблюдаются лишь количественные изменения.

Лимфатические узлы и другие вторичные органы иммунной системы закладываются на 4 мес, их окончательное формирование завершается в постнатальном периоде. Лимфоидные фолликулы, располагающиеся в подвздошной кишке и аппендиксе, в пейеровых бляшках, содержат «клетки предшественники» плазматических клеток. Они дозревают до плазматических клеток, синтезирующих IgA к 14-16 нед внутриутробного развития плода.

Стволовые клетки появляются на 3-8 нед эмбриогенеза и обнаруживаются в печени, кровяных островках желточного мешка. Позднее главным их продуцентом становится костный мозг.

Лимфоциты впервые обнаруживаются на 9 нед в тимусе, на 12- 15 - в селезенке. В крови лимфоцитоподобные клетки определяются с 8-10 нед.

Лимфоидные клетки, наделенные функцией Т-лимфоцитов (CD3+), выявляются на 10-11 нед. В-клетки (CD19+) определяются в печени с 10-12, в селезенке - с 12 нед.

Синтез и секреция IgM регистрируется в клетках на 11-й, IgG - на 22-ой нед. Содержание IgM составляет 1/10 от материнского, а IgG - еще меньше.

Образование компонентов системы комплемента начинается у плода на 8-ой нед беременности. При этом компоненты С2 и С4 синтезируются макрофагами, С5 и С4 - в печени, легких, перитонеальных клетках, С3 и С1 - в тонкой и толстой кишке. На 18-ой нед развития все указанные компоненты определяются в сыворотке крови плода.

Клеточные и гуморальные факторы неспецифической резистентности появляются в раннем онтогенезе.

В период эмбрионального развития «работа» иммунной системы имеет свои особенности. В частности, среди Т-зависимых иммунологических реакций первой проявляется способность к отторжению трансплантата (13 нед), ГЗТ реализуется значительно позднее.

Несмотря на наличие в организме плода значительного количества В-клеток с иммуноглобулиновыми рецепторами, плазматичес-

ких клеток, непосредственно синтезирующих АТ, очень мало. Ряд очень мощных факторов супрессирует функцию гуморального звена иммунной системы. Это хорионический гонадотропин, α-фетопротеин, α-2-глобулин. Резко ограничено в этот период влияние на В-клетки Т-лимфоцитов и макрофагов.

Преждевременная активация иммунной системы наблюдается при внутриутробном инфицировании. Практически всегда это сопровождается какими-либо иммунопатологическими расстройствами.

Таким образом, для эмбрионального периода типичным этапом иммуногенеза является толерантность собственной иммунной системы и пассивный антительный иммунитет за счет материнских IgG, концентрация которых прогрессивно нарастает в процессе беременности. Способность плода образовывать компоненты системы комплемента неполноценна. В III триместре ее уровень хотя и возрастает, но составляет не более 30-50% показателей взрослых. Система местного иммунитета в раннем и позднем онтогенезе не развита.

Иммунный статус у детей после рождения

Здоровый доношенный ребенок, рожденный здоровой матерью с физиологическим течением беременности, имеет определенный иммунный статус и соответствующий уровень факторов неспецифической антиинфекционной резистентности.

Своеобразный характер пассивного иммунитета новорожденного имеет положительные и отрицательные стороны. Так, не получая от матери IgM, плод не насыщается связанными с этим классом групповыми изогемагглютининами, что снижает риск развития конфликта при несовпадении групповых эритроцитарных Аг. С другой стороны, индуцируется низкая защита против грамотрицательных бактерий, поскольку в этой фракции преимущественно находятся АТ против указанных возбудителей.

В момент рождения у ребенка наблюдается физиологический лейкоцитоз, доходящий до 12-15 млрд кл/л. Из клеток более 35% составляют лимфоциты. Из общего числа лимфоцитов около половины составляют Т-клетки. В относительных величинах их содержание умеренно снижено, а в абсолютных, учитывая высокий лейкоцитоз, не изменено.

Около 60% от всех CD3+ (Т) - лимфоцитов составляют клетки с маркером CD4+, 15% - Т-клетки, носители CD8+.

Функции лимфоцитов новорожденных изменены. Так, интенсивность реакции бластной трансформации, индуцированной Т- митогеном ФГА, «нормальна» или несколько снижена, чем у более взрослых контингентов. Уменьшена их способность продуцировать лимфоциты, индуцировать кожные реакции. В то же время в клетках отмечается более высокий уровень метаболизма, если судить по интенсивности синтеза нуклеиновых кислот.

Количество CD19-клеток у новорожденных обычно повышено как в относительных, так и в абсолютных значениях. Как правило, на этих клетках обнаруживаются IgM и IgE рецепторы.

В пуповинной крови новорожденных определяются IgM и IgG; и IgE обнаруживаются крайне редко. Синтез IgM резко возрастает, достигая максимума на 2-3 нед жизни ребенка, затем к месячному возрасту снижается, в дальнейшем медленно возрастает, достигая к 6-12 мес уровня взрослых.

Чрезмерное увеличение концентрации IgM у новорожденных является свидетельством перенесенного внутриутробного инфицирования. Чаще всего это сифилис, краснуха. Повышение уровня IgM в три раза является свидетельством наличия сепсиса у ребенка.

Концентрация IgG весьма незначительна при рождении, возрастает к 7-8 годам. У детей, вскармливаемых искусственно, эта динамика реализуется значительно быстрее.

в сыворотке крови новорожденных, как правило, отсутствуют в течение первого месяца жизни. В дальнейшем содержание иммуноглобулина медленно нарастает, составляя к концу первого года 28% от уровня этого белка взрослых. Нормализация параметра достигается к 8-15 годам.

IgD у новорожденных обычно не определяется. Появляется этот белок примерно на 6-й нед, достигая уровня взрослых к 5-10-15 годам.

IgE также не обнаруживается у новорожденных, постепенно нарастая, он приближается к значениям взрослых людей к 11-12 годам. Ускорение накопления реагина является риском развития у детей бронхиальной астмы и других аллергических и особенно атопических заболеваний.

Известно, что содержание иммуноглобулинов определяется суммой АТ различной специфичности. Раньше других у детей появляются АТ против Аг вирусов, бактериофагов, Н-Аг грам-отрицательных микроорганизмов кожи, позднее - на О-соматический антиген грам-

отрицательных бактерий. Следует подчеркнуть, что на синтез иммунных глобулинов оказывает влияние микрофлора организма ребенка. Основным представителем кишечной микрофлоры в этот период являются бифидумбактерии. Поэтому любые неблагоприятные факторы (искусственное вскармливание, применение антибиотиков) неизбежно влекут за собой нарушение видового состава микрофлоры и изменения спектра образующихся АТ. Антителообразование у новорожденных, как правило, протекает только по первичному типу, требующему для реализации большого количества Аг. Значительно замедлено переключение синтеза с IgM на IgG, в течение 5-20 дней у взрослых и 20-40 - у детей.

В момент рождения фагоциты и сыворотка крови новорожденных обладают определенной бактерицидной активностью против ряда микробных штаммов. Хемотаксис и функциональная активность макрофагов уменьшена. Частично это компенсируется увеличением содержания гранулоцитов, так же наделенных фагоцитирующей функцией. Однако переваривающая способность этих клеток снижена за счет незрелости ферментов.

Ребенок рождается со сниженными, по сравнению со взрослыми, уровнями комплемента и пропердина, которые довольно быстро нарастают. Исходная активность лизоцима, напротив, значительна.

Больше всего лизоцима в слюне детей (до 200 мкг/мл), что во много раз превышает его концентрацию в сыворотке крови. Наиболее высокое содержание лизоцима в слюне детей первого года жизни, в возрасте 1-6 лет оно снижается почти в 3 раза, к 7-15 годам возрастает, но не достигает исходного уровня.

ребление молока ребенком, его количество оказывается достаточным для защиты слизистых от инфицирования.

Плазматические клетки, расположенные в слизистых оболочках, образуют IgA, IgM, IgG, IgD, IgE. Стенка кишечника синтезирует до 3 г иммуноглобулинов в сутки. IgG обеспечивают защиту в основном против токсинов, остальные против бактерий и вирусов. Формирование полноценного местного иммунитета по разным данным завершается к 1-12 годам жизни.

Соотношение плазматических клеток желудочно-кишечного тракта, продуцирующих иммунные глобулины, при некоторых заболеваниях меняется. Так, у детей раннего возраста (от рождения и до 3 лет) с хроническим гастродуоденитом наблюдается дефицит по IgA и увеличение продукции IgM. У пациентов с холециститом отмечается уменьшение концентрации и увеличение IgM или IgG. При язвенной болезни 12-перстной кишки происходит падение уровня в дуоденальном содержимом. Дефицит местного облегчает связывание иммунных глобулинов других классов с Аг.

Mестный иммунитет обусловливается не только гуморальными, но и клеточными факторами. Показано, что в первые 24 ч после рождения ребенка происходит резкое повышение количества альвеолярных макрофагов. Их число продолжает увеличиваться до месячного возраста, после чего стабилизируется. Mикробоцидные свойства макрофагов и других фагоцитирующих клеток, как правило, отстают у детей первых недель и даже месяцев жизни.

Состояние иммунной системы ребенка в первые годы жизни характеризуется высокой динамичностью. Так, после рождения снижается число лейкоцитов в циркуляции, повышается процентное содержание лимфоцитов, уменьшается количество гранулоцитов. Перекрест между кривыми, отражающими динамику этих клеток, впервые происходит на 5 сут жизни, после чего аналогичный перекрест (снижение удельного веса лимфоцитов и повышение нейтрофилов) отмечается в возрасте 4-5 лет. Очень медленно повышается относительное содержание Т-клеток, уровень В-лимфоцитов неуклонно снижается до нормы.

Таким образом, для эмбрионального периода типичной является толерантность и пассивный иммунитет за счет материнских IgG, концентрация которых нарастает в процессе беременности. У новорожденного также доминирует материнский пассивный иммунитет, хотя уже отмечается начало синтеза собственных АТ, наделенных малой спе-

цифичностью. К 3-4 годам начинает созревать плазмоцитарная реакция, напряженность пассивного материнского иммунитета снижается, постепенно сменяясь приобретенным собственным. В 6-12 мес иммунная реактивность созревает. В возрасте 1-3 лет отчетливо работает Т-клеточный иммунитет. В этот же период достаточно активно функционируют и В-лимфоциты.

Из изложенного следует, что организм новорожденного вплоть до годичного возраста плохо защищен от инфекционных агентов. Действует главным образом гуморальное звено иммунитета. Т-зависимые реакции и фагоцитоз развиты недостаточно и вступают в полную силу позднее, иногда лишь к периоду полового созревания.

Учитывая все эти сведения, назначение иммунотропных средств должно производиться крайне осторожно, чтобы не извратить естественные особенности реагирования, приняв за иммунные расстройства физиологические изменения иммунных реакций.

При многих заболеваниях у детей в патологический процесс рано вовлекаются печень и селезенка. Эти органы во внутриутробном периоде осуществляют гемо-и лимфопоэз. Поэтому в ответ на повреждение или инфицирование плод отвечает активизацией ретикулоэндотелиальной системы. После рождения ее значимость падает, заменяясь более совершенными механизмами. Однако у части так называемых «медленно стартующих детей» с задержкой созревания иммунной системы возможна реакция на патогенную ситуацию указанных органов.

В настоящее время в жизни ребенка выделяют несколько критических периодов, которые характеризуются наибольшей ранимостью организма (Д.В. Стефани, Ю.Е. Вельтищев, 1996).

Во внутриутробном периоде критическим следует считать возраст 8-12 нед, когда происходит дифференцировка органов и клеток иммунной системы.

Первым критическим периодом после рождения является период новорожденности, когда организм подвергается действию огромного числа Аг. Иммунная система в это время подвержена сильным супрессорным влияниям, пассивный гуморальный иммунитет обусловлен материнскими АТ. Отмечается функциональный дисбаланс CD3 (Т)-лимфоцитов, супрессорную функцию реализуют не только СD8+ -клетки, но и незрелые тимоциты и другие клетки.

Второй критический возраст (3-6 мес) характеризуется ослаблением пассивного гуморального иммунитета в связи с катаболизмом

материнских АТ. При этом супрессорная направленность иммунных реакций сохраняется при наличии выраженного лимфоцитоза. На большинство Аг развивается первичный иммунный ответ с преимущественным синтезом IgM без формирования иммунной памяти. Такой тип иммунного ответа наступает при вакцинации против столбняка, дифтерии, коклюша, полиомиелита, кори и только после 2-3-й ревакцинации развиваются вторичный иммунный ответ с образованием IgG АТ и стойкая иммунная память.

Третий критический период - 1-й год жизни. В это время сохраняется первичный характер иммунного ответа на многие Аг, однако уже возможно переключение на образование IgG-АТ. Однако синтез субклассов IgG2 и IgG4 запаздывает. Супрессорная направленность иммунных механизмов начинает сменяться хелперной. Система местного иммунитета не развита, дети чувствительны к респираторным вирусным инфекциям.

Пятый критический период - подростковый возраст (у девочек с 12-13, у мальчиков с 14-15 лет). Пубертатный скачок роста сочетается с уменьшение массы лимфоидных органов. Повышение секреции половых гормонов (прежде всего, андрогенов) ведет к подавлению клеточного звена иммунитета и стимуляции его гуморальных механизмов.

В целом у детей имеются следующие особенности звеньев иммунного статуса.

Т-звено иммунитета. Количество лимфоцитов периферической крови при рождении в первые сутки жизни составляет 24-30%, а абсолютное число - 3-9 млрд/л. Затем их относительное количество нарастает и к 4-5-м сут достигает 40-50%, абсолютное - 2,5-10 млрд/л.

Лимфоциты новорожденных отличаются высокой метаболической активностью, в них увеличен синтез ДНК и РНК. БТЛ при культивировании с ФГА хорошо выражена как у доношенных, так и недоношенных новорожденных. Отмечается высокий уровень спонтанной трансформации, в среднем около 6-10%, тогда как у взрослых этот показатель составляет около 0,2%.

В-звено иммунитета. Система гуморального иммунитета в отличие от клеточного начинает активно функционировать лишь после рождения под влиянием антигенного раздражения. При рождении ребенка содержание IgG в крови обычно больше, чем у матери, так как трансплацентарный переход этого иммуноглобулина является активным процессом. IgM в сыворотке обычно отсутствуют или определяются в минимальных количествах. также отсутствуют или находятся в следовых концентрациях. К концу 1-й нед содержание и IgM несколько возрастает, IgG ко 2-3-й нед заметно снижается и достигает минимальных концентраций в возрасте 1-4 мес.

Фагоцитарное звено. Число нейтрофилов в крови при рождении относительно велико: 50-70 % и 4,5-20 млрд/л. С 4-х сут оно начинает снижаться до 30-40% - 2,5-6 млрд/л. Mоноциты в течение всего периода новорожденности составляют 4-9 % - 0,6-2 млрд/л. Поглотительная способность нейтрофилов новорожденных не снижена, однако переваривающая активность снижена, что приводит к незавершенному фагоцитозу. Число НСТ-положительных нейтрофилов в спонтанной реакции у детей первых 2 нед жизни составляет 14-20 %, тогда как в другом возрасте - 2-10%. Подъем числа этих клеток в индуцированном тесте невысок, т.е. фагоцитарный резерв в этом возрасте невелик. Mоноциты новорожденных характеризуются низкой бактерицидной активностью и недостаточной миграционной способностью.

2.4. ИММУННАЯ РЕАКТИВНОСТЬ ПРИ КЛИМАКСЕ

Развитие климактерического синдрома и его тяжесть во многом определяется гиперреактивностью аутоиммунных реакций по отношению к компонентам яичников. При этом наблюдается снижение функции CD8-клеток при умеренной активации В-лимфоцитов за счет гиперпродукции иммунного глобулина класса G.

В принципе особенности изменений иммунного статуса несколько отличаются от такового у лиц старшего возраста (более 70 лет). Они появляются у лиц обоего пола в возрасте до 50 лет и начинают обусловливать снижение «цензорной функции иммунитета», способствуя увеличению риска развития инфекционных, аутоиммунных и в определенном проценте случаев - онкологических заболеваний.

Проведение заместительной гормональной терапии одновременно с дополнительным введением тимусных препаратов (тималина или тактивина), спленина в комбинации с витаминами Е, С, глютами-

новой кислотой способствуют коррекции иммунопатологических реакций.

2.5. ИММУННАЯ РЕАКТИВНОСТЬ ПРИ СТАРЕНИИ

Современное изменение демографической структуры популяции привело к тому, что доля пожилых людей в обществе за последние несколько десятков лет увеличилась в 2 раза и имеет тенденцию к дальнейшему возрастанию. Уже сегодня более половины госпитализированных составляют старики. И это не удивительно, поскольку в возрасте старше 65 лет заболевания встречаются у 60% обследованных, после 80 лет - у 80%, причем число диагнозов на одного больного достигает 10-11.

Какие же патологические процессы чаще всего наблюдаются у пожилых людей?

1. Атеросклероз сосудов с заболеваниями, которые зависят конкретно от локализации, - мозг, сердце и т.д.

2. Опухоли, частота возникновения которых зависит от продолжительности и степени контакта с канцерогенами, от активности тканей, на которые они действуют, и от состояния иммунного надзора. Частота злокачественных новообразований возрастает с 45 до 80 лет с тенденцией к удвоению каждые 9-10 лет. Как правило, это рак крови (лимфо- и миелолейкозы), желудка, легких, предстательной железы и других органов.

3. Инфекции - вирусные, бактериальные с развитием системных поражений и локальных очагов - цистит, конъюнктивит, отит и т.д. Люди старческого возраста тяжело переносят инфекционные заболевания, которые протекают у них атипично, затягиваются на длительное время, плохо поддаются лечению.

4. Аутоиммунные заболевания, которые встречаются не менее, чем у 50% пожилых людей. Чаще всего это аутоиммунные поражения щитовидной железы (почти 25% у женщин старше 50 лет), активный гепатит и т.д.

5. Дегенерация и гибель клеток - крайняя степень возрастного повреждения, особенно нервной ткани (старческое слабоумие, болезнь Паркинсона). Необходимо подчеркнуть, что глубокие дегенеративные изменения претерпевает центральный орган иммунитета - тимус. Вилочковая железа к 10-15 годам достигает массы 30-40 г, затем постепенно уменьшается, до 10-13 г в 70-90-летнем возрасте. Жировая ткань постепенно замещает функционирующие компоненты тимуса, и к глубокой старости лишь незначительные участки выполняют защитную функцию.

По-видимому, возрастные иммунные расстройства приводят к тому, что общее течение заболеваний у стариков характеризуется тем, что в патологический процесс, как правило, вовлекается не одна, а ряд систем организма, Это неизбежно приводит к приему множества лекарственных средств. Учитывая извращенные детоксицирующие возможности старческого организма, это может обусловить непредсказуемые последствия.

Своеобразными моделями преждевременной эволюции иммунной системы являются синдромы Вернера и Гетчинсона-Гилфорда, при которых происходит ускоренное старение организма.

Синдром Вернера - это наследственная форма кожной атрофии с преждевременным старением, которая обычно начинается после 20 лет. У таких больных уже в юношеском возрасте находят патологические процессы, характерные для лиц старческого возраста: катаракта, атрофия кожных покровов, поседение, облысение, снижение остроты слуха, старческие изменения голоса, ограниченная подвижность суставов, дистрофия ногтей, атрофия мышц. Кроме этого, у больных отмечается отставание в росте, угнетение функции половых желез, сахарный диабет, ранний атеросклероз, высокая частота злокачественных опухолей, снижение интеллекта.

Еще более раннее развитие процессов старения характерно для болезни Гетчинсона-Гилфорда. Патологические процессы развиваются уже с 8-12 мес жизни и к 3 годам налицо все характерные симптомы: карликовый рост, поседение, облысение, пигментация и атрофия кожи, катаракта, глаукома, обменные нарушения. К 5-15 годам появляются признаки сосудистых нарушений, к 18 годам больные обычно погибают.

С возрастом наблюдается прогрессивное угнетение всех звеньев иммунной системы. Так, если максимальный иммунный ответ регистрируется в периоде полового созревания, то в старости он составляет всего лишь 1-2% от молодых. Не все иммунные реакции изменяются в равной степени, некоторые из них длительный срок сохраняются постоянными. Более всего страдает Т-звено иммунитета. По словам американского иммунолога Т. Mейкинодана, «с годами в организме повреждается полицейская функция иммунной системы», что в первую очередь связано с возрастной инволюцией вилочковой железы, начинающейся с 15-20 лет и сопровождающейся уменьшением его массы, ослаблением функции и синтеза регуляторных факторов, что приводит к закономерному прогрессивному подавлению тимузависи-

мого звена иммунитета. Указанные процессы связаны с уменьшением количества стволовых клеток и некоторой дефективностью их функционирования (снижение способности к миграции из костного мозга в центральные органы иммунной системы, большая чувствительность к ионизирующей радиации и т.д.). Одновременно снижается содержание Т- лимфоцитов. Также несколько затормаживается вступление старых клеток в митотический цикл. Изменяется соотношение регуляторных субпопуляций лимфоцитов. Уменьшается количество CD8-лимфоцитов (по другим данным оно несколько повышается) и нормальное или увеличенное - CD4-клеток. Все эти нарушения происходят на фоне общей лимфопении. Общее содержание лимфоцитов в периферической крови резко падает с 5 млрд/л в раннем возрасте до 2 млрд/л к 20 годам. Затем эти количественные параметры сохраняются в течение последующих 30 лет жизни. С конца четвертого десятилетия число лимфоидных клеток снижается, составляя до 1,5 млрд/л у лиц старше 80 лет. Экспериментальные исследования показали, что взаимодействие Т-клеток, носителей маркера CD4 + и В-лимфоцитов у пожилых лиц происходят значительно хуже, чем у молодых. Эти данные свидетельствуют о том, что и В-звено иммунитета подвергается негативным изменениям: в старческом возрасте наблюдается падение нормальных АТ, включая изогемагглютинины. Известно, что самое низкое их количество наблюдается сразу после рождения, к 5-10 годам оно увеличивается в 15-20 раз, затем медленно снижается и приближается к величинам первого года жизни. Указанное обстоятельство необходимо учитывать при определении групповой принадлежности крови у пожилых лиц.

Особенно страдает первичный иммунный ответ. На вакцинацию вырабатываются низкоавидные АТ класса IgM и лишь вторичная иммунная реакция в старости оказывается более сохранной. Поэтому для формирования полноценного напряженного иммунитета необходимо осуществлять несколько повторных иммунизаций. Если организм был вакцинирован Аг в молодости, то при вакцинации в старческом возрасте нарушение антителообразования может быть небольшим. Парадокс в том, что снижение выраженности иммунного ответа наблюдается на фоне увеличения общего количества иммунных глобулинов.

Факторы неспецифической антиинфекционной резистентности ингибируются меньше. Падает функциональная активность макрофагов, сегментоядерных нейтрофилов и бактерицидность ней-

трофильных гранулоцитов, хотя их общее количество не меняется. Уменьшается активность лизоцима, общая бактерицидность сыворотки крови, образование интерферона, менее выражена воспалительная реакция. Содержание комплемента увеличивается у мужчин на шестом десятке жизни, у женщин - на 10 лет позже, далее происходит его снижение.

Исследование реакции ГЗТ пожилых людей свидетельствует о сниженной реактивности на Аг, с которыми они контактировали в молодости. К этому надо добавить угнетение аллергических реакций третьего типа (иммунокомплексных) и ингибицию синтеза IgE (аллергия первого типа). Вместе с тем снижение барьерной функции кожи и слизистых оболочек способствует более легкой сенсибилизации организма химическими веществами, возбудителями, их токсинами и т.п. Все это увеличивает риск развития в старости бронхиальной астмы.

Совершенно закономерно в пожилом возрасте увеличивается частота индукции аутоиммунных реакций. В основе этого феномена лежит усиление соматических мутаций, ослабление супрессорных механизмов, в результате чего иммунокомпетентные клетки становятся аутоагрессивными. Иногда эти состояния имеют связь с предыдущими патологическими процессами, но чаще индуцируются у совершенно здоровых индивидов. В старческом возрасте выявляются АТ против ДНК, тиреоглобулина, внутреннего фактора слизистой оболочки желудка, клеточных ядер, митохондрий, миофибрилл, клеточных мембран, лимфоцитов, эритроцитов, ткани поджелудочной железы, надпочечников, печени, сердца, мозга. У женщин уровень аутоантител выше, чем у мужчин, но пик их активности приходится на 10 лет позже.

Развитие иммунных расстройств часто происходят на фоне возрастного гормонального дисбаланса - гипотиреоза, диабета, нарушений функции гипофиза, надпочечников или яичек.

На основании этого была сформулирована иммунологическая теория старения: оно начинается с инволюции тимуса, что вызывает увядание иммунитета, вслед за которым наступает старение других органов, которое, возможно, имеет аутоиммунную основу. Этот процесс происходит отчасти в результате подавления супрессорных механизмов и изменения пространственных структур Аг гистосовместимости. Эти Аг с течением времени начинают приобретать элементы чужеродности, запуская губительную для индивида реакцию отторжения.

Таким образом, иммунокомпетентные клетки вилочковой железы оказываются контрольно-часовым механизмом, регулирующим продолжительность жизни. Поэтому долгожители являются иммунологической элитой, у которых инволюция тимуса замедлена.

К этому надо добавить то, что у стариков отмечается снижение содержания низкомолекулярных нуклеиновых кислот и повышается активность нуклеаз. Дефицит нуклеиновых кислот оказывается дополнительным фактором усугубления иммунных расстройств.

К сожалению, пока еще методы коррекции возрастных изменений системы иммунитета не разработаны. В экспериментальных условиях удалось замедлить процессы старения животных при содержании их на рационе с ограниченной энергетической ценностью либо на пище с достаточным количеством калорий, но со сниженным содержанием белка. Другой метод заключается в снижении температуры тела, создании условий для формирования гипоксии определенной степени, как это бывает при проживании в условиях высокогорья. Третий путь представляет собой применение стариками тимусных препаратов, в какой-то степени компенсирующих угасающую функцию вилочковой железы, обогащение рациона низкомолекулярными нуклеиновыми кислотами и другие подходы.

1.3. ОСОБЕННОСТИ ИММУНИТЕТА В СИСТЕМЕ МАТЬ - ПЛАЦЕНТА - ПЛОД

Развитие и функция иммунной системы плода и новорожденного имеет характерные черты по сравнению с иммунитетом взрослого человека. Эти особенности основываются как на врожденных генетически обусловленных свойствах иммунитета, так и благодаря ограничению зародыша от внешней среды, осуществляемого плацентой как специфическим барьером.

Иммунобиологические особенности плаценты можно рассматривать с двух позиций: в связи с проблемой взаимоотношений плода и матери (аллотрансплантата плодного яйца в организме женщины) и в связи с иммунологической защитой плода от инфекций в системе мать - плацента - плод. В литературе к настоящему времени накопилось достаточно фактов, характеризующих механизм, обеспечивающий вынашивание плода гемохориальным типом плаценты, при которой зародыш непосредственно соприкасается с кровотоком матери.

Условия, определяющие иммунологическую толерантность матери по отношению к плоду, обусловлены совокупностью ряда особенностей строения и функции плаценты (Цирельников Н. И., 1980). Эти особенности можно разделить следующим образом: с одной стороны иммунологическая реактивность беременных связана с гормональными изменениями в системе мать - плацента - плод. Известно, что ряд белков, синтезирующихся в плаценте, действуют угнетающе на иммунологическую реактивность матери. Так, в частности, трофобласт синтезирует белок-супрессор, тормозящий общий иммунный ответ. Иммуноблокирующими свойствами обладают и другие белки (хорионический гонадотропин, плацентарный лактоген, а также прогестерон. Однако во время беременности общей иммуносупрессии не происходит).

В настоящее время до конца неясно, каким именно из белков плацентарной ткани или крови матери или плода принадлежит функция частичной или общей иммуносупрессии. Подавление функции лимфоцитов беременных осуществляется, в частности, α-фетопротеином, трофобластическим β-гликопротеидом. С другой стороны иммуномаскирующее действие оказывает щеточная кайма синцитиотрофобласта ворсин хориона, которая содержит кислые глюкозаминогликаны, сиаломуцин и другие гликопротеиды, которые своими гликидными компонентами молекулы снижают контакт иммунокомпетентных клеток с антигенными детерминантами плацентарных белков ворсин.

Кроме того, с помощью антисывороток к β 2 -микроглобулину, являющемуся основой антигенов, показано, что количество последних на ворсинках трофобласта резко снижено в отличие от мембран других клеток плаценты. Эта особенность тоже играет важную роль в антигенной толерантности ткани плода и матери.

В плаценте доказано наличие и других типов блокирующих факторов. Так, плацентарные элюаты ингибируют бласттрансформацию лимфоцитов in vitro, в том числе, розеткообразование, антителозависимую цитотоксичность и РБТЛ. Более того, в плацентарной ткани показано наличие специфических антилимфоцитарных антител. Высказана мысль о том, что плацента сорбирует эти антитела из крови матери, препятствуя их проникновению в кровь плода. При этом достигается двойной положительный эффект: устранение возможности сенсибилизации этими антителами лимфоцитов плода и усиление толерантности антигенов плода и матери.

Описан еще один механизм иммунологической депрессии лимфоцитов матери. Лимфоциты, изолированные из пуповины, ингибируют митотическое деление лимфоцитов матери. Это связывают с усиленной активностью супрессорной фракции Т-лимфоцитов ребенка. С их помощью плод защищен от воздействия материнских лимфоцитов, которые могут проникать трансплацентарно.

Часть белков, особенно гонадотропин, включается в процессы блокады антигенного распознавания плода в организме матери. Показано, что этот белок, концентрируясь на трофобластической мембране, слабо иммуногенен и не вызывает иммунологических сдвигов в организме матери. Гонадотропин обладает также функцией блокировать реакцию отторжения со стороны лимфоцитов матери.

Наиболее полно иммунологические механизмы сохранения беременности проанализированы в обзоре М. А. Пальцева с соавт. (1999). Весьма значительная роль в этом процессе отводится большим гранулярным лимфоцитам (БГЛ) и макрофагам децидуальной оболочки. Анализируя антигенные свойства этих клеток, основным маркером которых является CD56, авторы приходят к выводу, что их можно рассматривать как вариант NK клеток, филогенетически более древний, чем циркулирующий в крови.

В настоящее время доказана выраженная синтетическая активность БГЛ, продуцирующих КСФ-1, ГМ КСФ, γ-интерферон, ТФР, ФНО, IL-2, -6, -10 и вероятно другие вещества. Существенное значение имеет и межклеточная кооперация. В том числе имеются данные, что активация NK клеток происходит под влиянием продуцируемого трофобластом интерферона.

В обзоре С. А. Селькова с соавт. (2000) основное значение как в поддержании нормальной беременности, так и в наступлении срочных и преждевременных родов придается макрофагам. При этом профиль продуцируемых ими цитокинов при нормальном и патологическом течении беременности различен (IL-4, -5, -6, -9, -10 и γ-интерферон, ФНО, IL-2, IL-12 соответственно).

Начало сокращения мускулатуры матки связывается с выделением макрофагами IL-1, -6, -8 и простогландинов ПГЕ 2 и ПГЕ 2&aloha; . Установлено, что при нормальной беременности наблюдается постепенное нарастание уровня эстрогенов, достигающее самой высокой концентрации к моменту родов. При переношенной же беременности секреция эстрадиола снижена. Начало родового акта может быть стимулировано изменением уровней эстрогенов и прогестерона. В ранние сроки беременности оно составляет 1:80-1:120, а к 10 мес снижается до 1:1,2-1:1,3. Известно, что большая часть прогестерона образуется материнской частью плаценты. К концу беременности плацента синтезирует прогестерона в 3,5 раза больше, чем в середине беременности.

Синтезируемые плацентой хорионический гонадотропин и плацентарный лактоген также участвуют в регуляции родового акта. К концу беременности количество ХГ снижается, регулируя тем самым повышение эстрадиола в крови беременных. В то же время ХГ сам снижает тонус и сокращения матки.

Имеется определенная связь между перенашиванием и выработкой ряда гормонов плацентой. В схему активации родового акта включается также плацентарный лактоген (синергист хорионического гонадотропина). ПЛ достигает максимальной концентрации к 36 нед. беременности, а к началу родов снижается.

Известную роль в развитии родовой деятельности играет и окситоцин, снижающий мембранный потенциал мышечной клетки и изменяющий соотношение в ней ионов натрия и калия. С удлинением срока беременности активность фермента окситоциназы в плаценте и крови возрастает. Однако к моменту родов при нормальной беременности происходит резкое снижение его уровня, а количество окситоцина при этом увеличивается.

При перенашивании беременности наблюдается увеличение содержания фермента и уменьшение количества окситоцина. Эти процессы ведут к появлению при переношенной беременности процессов анаэробного гликолиза, накоплению ацидоза и энергетического дефицита. Это сопровождается повышением активности лактатдегидрогеназы, окислительных циклофераз и увеличением парциального давления СО 2 . Прослеживается однотипность некоторых обменных реакций перенашиваемости беременности и слабости родовой деятельности, говорящие, что механизмы этих осложнений имеют много общих закономерностей.

При нормальной беременности созревание плаценты ведет к максимальной выраженности трансплацентарной функции к 36 нед беременности, в дальнейшем скорость трансплацентарного обмена начинает снижаться. К концу первой половины беременности фетоплацентарный индекс составляет 3:1, а к моменту родов он увеличивался до 6:1.

Таким образом, иммунологический конфликт организма беременной и плода блокируется каскадом реакций, эффективно замещающих друг друга, и создающих по типу обратной связи невозможность отторжения плода даже при ряде неблагоприятных воздействий на него. Интересно, что основные механизмы толерантности в системе антигенной совместимости мать - плацента - плод, вероятнее всего, включаются и в другие процессы, влияющие на иммунологическую реактивность организма матери и плода.

В. Ф. Мельниковой (1992) показано, что инфекции в плаценте и, в частности вирусные, протекают со сниженными клеточными лимфоцитарными реакциями с переходом процесса во внутриклеточную персистентную форму. Сведений о роли плаценты при инфекции в системе мать-плацента-плод и иммунологических взаимоотношениях между матерью и плодом имеется несколько меньше. Связано это не только с трудностью диагностики инфекционных, особенно вирусных, поражений в ходе беременности, но и со сложностью оценки ряда иммунологических процессов в этом органе в ходе инфекции.

Вместе с тем очевидно, что механизмы воспаления и поддержания беременности имеют много общих черт. В этом отношении, на наш взгляд, можно выделить следующие, установленные исследователями, положения. Мембранные эффекты и энергетическая стимуляция посредством цАМФ, естественно активирует ряд защитных процессов в плаценте. Отмечено участие ЦН в реакциях гуморального иммунитета и аллергических реакциях, их противовоспалительное действие и связь действия ЦН с простогландинами. Одним из моментов регуляции иммунных реакций является, безусловно, воздействие цАМФ на мембранные процессы.

Необходимо остановиться также еще на одном механизме включения каскада системы цАМФ в процессе защиты плаценты и плода от инфекций. Активное функционирование аденилатциклазы и цАМФ в плацентарной ткани ведет к активации протеинкиназы, обладающей функцией фосфорилирования конечных участков, синтезируемых на рибосомах белков. В то же время установлено, что действие интерферона связано с активацией протеинкиназы. Двунитевые вирусные РНК являются своего рода катализатором для неактивной протеинкиназы. Такая активированная под действием двунитевых вирусных РНК протеинкиназа фосфорилирует среди прочих белков фактор инициации белкового синтеза на полисомах eI2, переводя его из активной формы в неактивную, что в свою очередь, блокирует синтез вирусных белков на рибосомах и образование полных вирусных частиц.

Показано, что ингибиция синтеза белков путем блокады фактора инициации более характерна для белков, которые транслируются через выработку информационных РНК in vitro. Установлено также, что этот процесс связан с транскрипцией иРНК на матрице клеточной ДНК. В то же время в плацентарной ткани повышено содержание цАМФ и, следовательно, активируется протеинкиназа.

Таким образом, через механизм цАМФ, возможно, исключается синтез активного противовирусного интерферона. Через плаценту происходит диффузия материнского иммуноглобулина и антител. Эти факты известны со времени обнаружения в пуповинной крови дифтерийного антитоксина в конце 19 века.

В настоящее время известно, что не все классы иммуноглобулинов переходят от матери через плаценту в плод. Показано, что антитела класса Ig M либо совсем не переходят через плацентарный барьер, либо переходят в минимальном количестве.

Иммуноглобулин Е также не проходит сквозь плаценту. В связи с чем пуповинная сыворотка не способна вызывать сенсибилизацию даже в том случае, если кровь матери содержит большие концентрации Ig E.

Внутриклеточная защита плода может осуществляться либо интерфероном, синтезируемым матерью, либо образующимся в плаценте или тканях плода. Интерферон при этом остается неактивным до развития инфекционного процесса в системе мать-плацента-плод. Для плаценты же целесообразно иметь противовирусную защиту, быстро развивающуюся внутриклеточно. В этом отношении каскад аденилатциклазы-цМФ-протеинкиназа-инактивированный фосфорилированием белок инициации вполне удовлетворяет этим требованиям. Доказательством общности этих процессов служат исследования по соотношению цАМФ в клетках, защищенных и не защищенных интерфероном.

Рядом исследователей было показано, что интерферон, будучи введен внутрь клетки специальными манипуляторами, не проявляет своей противовирусной активности. Вещества же, вмешивающиеся в мембранные процессы в клетке (амфотеррин В, ганглиозиды) изменяют активность интерферонного белка. С другой стороны, через 30 мин после обработки клеток интерфероном, в них происходит увеличение уровня цАМФ, который достигает максимума через 2 ч после сорбции интерферона.

Таким образом, наличие в плацентарной ткани высокого уровня цАМФ и протеинкиназы ускоряет создание противовирусной резистентности плацентарных клеток и пролонгирует противовирусный эффект на весь период нахождения РНК-овых компонентов вириона в клетках.

Установлено, что от матери к плоду передается только Ig G, причем уровни его в пуповинной крови у плода достигают концентраций, обнаруживаемых в крови матери. Принцип передачи данного класса иммуноглобулина и целесообразности данного процесса чрезвычайно важен, так как образование собственного Ig G у плода достаточно низко и даже на момент родов не превышает 1% от синтеза его матерью.

Вначале предполагалось, что трансплацентарная передача Ig G свойственна только гемохориальному типу плаценты. Однако, в дальнейшем выяснилось, что она определяется способностью клеток транспортировать пиноцитарные вакуоли с протеинами без их деградации в ходе данного процесса.

Ig M также имеет аналогичный тип передачи, но скорость диффузии вакуоли значительно медленнее, в связи с чем концентрация этого белка у плода низка. Физиологически это частично оправдано снижением проникновения к плоду изогемагглютининов матери, относящихся к этому классу.

Из всех белков плазмы Ig G имеет наибольшую скорость перехода от матери к плоду. Вместе с тем, показано, что прохождение белков через плаценту не зависит от молекулярной массы белка, а является результирующей скорости его сорбции на клетках плаценты, диффузии в плод, обратной диффузии к матери и степени деградации внутриклеточными протеазами.

Механизм транспорта Ig G имеет много общего с проникновением внутрь клетки протеинов высокой массы, а также ДНК и РНК вирусов и токсинов белкового происхождения. Молекула иммуноглобулина связывается с рецептором на синцитиотрофобласте. Расщепленный трипсином Ig G обладает способностью диффундировать сквозь плаценту. Не проходит сквозь плацентарный барьер и полученный с помощью пепсина fab-фрагмент Ig G.

Теория F. W. R. Brambell (1966) с последующими дополнениями, предполагает рецепторный транспорт Ig G через плаценту. Имеется два типа пиноцитарных везикул - крупные (макро-) и мелкие (микропиноцитарные). Показано, что малый тип вакуолей предназначен для селективного связывания молекул белков, в частности Ig G. Такая вакуоль проходит через цитоплазму клетки и выбрасывается из нее с помощью экзоцитоза.

На клетках человеческого трофобласта хориона обнаружили рецепторы для Fc-фрагмента иммуноглобулина. В настоящее время принято подразделять Ig G на несколько подклассов (Ig G 1-4). Их дифференцировка в практических условиях может быть осуществлена по анализу изменения титров антител в нативной сыворотке, после прогревания, после контакта со стафилококком, после обработки цистеином (табл. 1)

Таблица 1 Физико-химические свойства антител, соответствующие различным классам

Класс антител Наличие антител
в нативной сыворотке после прогревания после стафилококка после цистеина
Ig M +++ + +++ +++
Ig G-3 +++ +++ +++
Ig G-1-2 +++ +++ +
Ig G-4 +/- +/-

По данным О. А. Аксенова определение классов и подклассов антител в крови матери и плода позволяет с большой точностью определить время инфицирования и степень активности инфекционного процесса.

Первоначально весьма активно, но краткосрочно идет выработка Ig M, затем с задержкой примерно на 1 нед - Ig G -2 и в меньших титрах Ig G4, наиболее поздно и в небольших титрах происходит выработка Ig G3.

При обострении хронической инфекции наиболее ранняя и значительная реакция происходит со стороны антител Ig G3, несколько позднее, но весьма выражена реакция со стороны Ig Gl-2, реакция со стороны Ig M ранняя, но слабо выраженная, антитела класса Ig G4 реагируют умеренно и поздно.

В плаценте, особенно на базальной мембране трофобласта, обнаружена С3-фракция комплемента, в эндотелии стволовых сосудов выделена С6-фракция. Последняя является одним из конечных продуктов комплемента, приводящих к нарушению проницаемости сосудов и мембран, необходимых для доставки многих белковых субстратов к плоду.

При изучении прохождения сквозь плацентарный барьер различных подклассов Ig G установлено, что подкласс Ig G2 менее проходим через него, в то время как другие подклассы Ig G1, 3, 4 проникают к плоду без изменения концентрации. Это связано с меньшей сорбцией данного подкласса на трофобластических рецепторах.

Интересно, что подкласс Ig G2, по данным Р. В. Петрова (1983), не сорбируется на рецепторах моноцитов и К-клеток. Можно полагать, что в процессе филогенеза система мать-плацента-плод у человека приобрела способность задерживать проникновение к плоду того типа Ig G, которые могут вызвать повреждение развивающегося зародыша. В то же время ряд авторов не подтверждает это положение. По их данным соотношение подклассов IgG в пуповинной и материнской крови одинаково.

Полученные к настоящему времени данные показывают, что в развитии иммунной системы плода наблюдается поэтапное становление клеточного и гуморального иммунитета, как во времени, так и во взаимоотношении между собой. Дифференцировка клеток иммунной системы происходит с 3 по 6 нед внутриутробного развития зародыша. Первые лимфоидные клетки обнаруживаются в фетальной печени на 5 нед, а к 6-7 нед происходит образование тимуса. С 8-9 нед в этом органе наблюдается активный лимфопоэз, независимый от антигенного стимулирования. Дальнейшее развитие тимуса направлено на дифференцировку в нем двух видов лимфоцитов: иммунологически незрелых (имеющих на своей поверхности тимус-антиген) и зрелых, находящихся в мозговом слое органа. В дальнейшем происходит их миграция из тимуса в паракортикальную зону периферических лимфоузлов и периартериальную зону селезенки. Эти клетки обладают иммунологической активностью (типа зрелых Т-клеток). Они осуществляют реакцию "антиген против хозяина" и киллерную функцию против аллогенно или антигенно измененных клеток, появляющихся в организме плода.

Лимфатические узлы выявляются у зародыша на 12 нед развития. В то же время при неосложненной беременности плазматические клетки отсутствуют. Обнаружение их свидетельствует об антигенном стимулировании зародыша, чаще всего инфекционного характера.

Необходимо также остановиться на развитии компонентов системы комплемента, поскольку от нее зависит потенцирование различных иммунологических реакций, в том числе приводящих к разрушению клеток, выходу гистамина и т. д. Так, компонент Clq почти вдвое уменьшает число лимфоцитов, взаимодействующих с антигеном. В то же время он не влияет на клетки, синтезирующие антитела. При увеличении содержания фракции комплемента С1 и низком уровне антителосвязывающих лимфоцитов происходит снижение лимфоцитов супрессоров ГЗТ.

Таким образом, этот компонент комплементарной системы регулирует процесс перехода иммунного ответа с клеточного на гуморальный путь. Фракция С3 комплемента участвует в индукции гуморального ответа, в частности усиливает выработку противовирусных антител.

Еще в начале 70-х годов было показано, что белки системы комплемента матери не проходят через плаценту. Доказан синтез С3 и С4 фракций комплемента фетальной печенью, начиная с 15 нед внутриутробного развития. Несмотря на то, что собственный комплемент зародыша уже в 1 триместре беременности обеспечивает его биологические функции, все же суммарная активность его у плода значительно ниже, чем у матери. Вероятно, его недостаточное количество ведет к снижению клеточного иммунитета плода.

Важным рубежом в становлении иммунных процессов является 20 нед гестации, когда начинается функционирование собственных механизмов иммунитета, в частности начало синтеза собственного Ig M. В то же время в околоплодных водах появляется выраженная антибактериальная активность, обусловленная наличием лизоцима, β-лизина, трансферрина, интерферона и т. п.

Среди исследователей долгое время сохранялось представление, что человеческий зародыш при нормальных условиях не синтезирует собственные иммуноглобулины, а их наличие у плода и новорожденного в течение первых месяцев постнатальной жизни обусловлено трансплацентарной передачей от матери. Это положение полностью совпадало с тем, что в норме у плода не обнаруживаются плазматические клетки, которые появляются лишь через несколько недель после рождения. Однако, они обнаруживаются у плода при инфекционном процессе, в частности при микоплазмозе и сифилисе.

С помощью ИФ и радиоиммунного методов была установлена возможность синтеза Ig M и Ig G иммунокомпетентными клетками при патологических состояниях плода. Синтез Ig M иммунокомпетентными клетками селезенки и тимуса начинается с 12 нед внутриутробного развития зародыша. Выработка Ig G появляется у плода с 12 нед в фетальной печени, селезенке и мезентериальных лимфатических узлах. Увеличение его содержания, начиная с 26 нед объясняется в основном транс плацентарной передачей.

Синтез Ig G выявлен в вилочковой железе и плаценте, начиная с 14 нед Ig A начинает синтезироваться зародышем с 13-14 нед, в основном в кишечнике и обнаруживается в околоплодных водах вплоть до рождения ребенка.

В отдельных работах показана возможность синтеза плодом Ig E при попадании аллергена, преодолевшего плацентарный барьер. Этот иммуноглобулин в основном синтезируется в легких и селезенке.

Синтез плодом собственных иммуноглобулинов, особенно Ig G свидетельствует о функционировании В-клеточной лимфоцитарной системы.

Известно также, что с 12 по 14 нед увеличивается число лимфоцитов с мембранными иммуноглобулинами. На этих клетках имеются рецепторы для комплемента. Все это доказывает, что низкий синтез иммуноглобулинов плодом является результатом меньшей антигенной стимуляции плода. Более того, установлено, что внутриутробно происходит процесс созревания лимфоцитов, независимый от антигенного раздражения.

При дефекте В-клеток отмечается их неспособность к трансформации в плазматические клетки. Во многих случаях антигены различных возбудителей стимулируют дифференцировку В-клеток, но не вызывают инфекционного процесса в организме плода.

Синтез молекулы антитела - энергетически зависимый процесс, поэтому более целесообразно получение плодом от матери готового антитела в виде Ig G. Главным биологическим смыслом передачи антител от матери к плоду является немедленная пассивная защита от заражения патогенными микроорганизмами. Барьерная функция плаценты замедляет распространение инфекционного процесса в системе мать-плацента-плод, поэтому появившиеся через 5-6 дней после инфицирования Ig G успевают проникнуть через плаценту раньше, чем возбудитель.

Клеточная Т-зависимая система иммунитета зародыша выполняет ряд функций, защищая его от инфекций, а также разрушая материнские лимфоциты, способные вызвать реакцию отторжения трансплантата. Установлено, что уже в 1 триместре тимус содержит до 90-95% розеткообразующих клеток - Т-лимфоцитов. Резкое увеличение этих клеток происходит к 11-12 нед беременности, к этому же времени происходит дифференцировка лимфоцитов на хелперы и супрессоры. Их функциональная активность находится на уровне клеток взрослого. Так РБТЛ достаточно выражена уже на 10 нед беременности. Пролиферативная же реакция на митогены (клеточные растворимые и инфекционные антигены) в лимфоцитах печени развивается раньше (на 7-8 нед).

Одной из важных функций Т-лимфоцитов является их киллерная функция, осуществляемая NK- и К-клетками. Показано, что цитотоксическая активность NK-клеток обнаруживается уже на 14-15 нед развития. Кроме того, установлена активация Т-клеток с помощью 5 фракции тимозина. Другим активатором Т-лимфоцитов является IL-2, усиливающий пролиферацию этих клеток.

Рождение ребенка приводит к радикальному изменению его иммунитета. С иммунологической точки зрения - это прекращение действия защитного барьера матери, столкновение ребенка с множеством чужеродных антигенов, включая микробные и вирусные. Вместе с тем исчезает трансплацентарный путь передачи защитных факторов от матери.

Установлено, что активность лейкоцитов новорожденных снижена по сравнению с детьми более старшего возраста. Это связано с низкой миграционной активностью лейкоцитов, обусловленной дефицитом клеточных эстераз, которые включаются в процесс метаболизма сложных мембранных эфиров, необходимых для миграции клетки. При этом отмечается низкая опсонизирующая активность сывороток, которая обусловлена низким содержанием у новорожденного Ig M и комплемента.

В настоящее время установлено, что в течение первых месяцев постнатальной жизни происходит снижение уровня материнского Ig G и постепенное нарастание собственных иммуноглобулинов этого класса. Выявлено повышенное содержание В-лимфоцитов у новорожденных в пуповинной крови по сравнению со взрослыми.

Недостаток синтеза иммуноглобулинов у новорожденных компенсируется клеточными механизмами иммунного ответа. Показано, что Т-лимфоциты новорожденных способны вырабатывать различные лимфокины, включая интерферон, и реагировать на стимуляцию ФГА. Однако, цитотоксичность их резко снижена.

Иммунологические аспекты перинатальных инфекций складываются из особенностей развития ребенка в этот период (контакт его с различными инфекционными возбудителями и антигенами) и постепенно снижающимся материнским иммунитетом. Состояние иммунитета беременной существенно не нарушается. Создается парадоксальный эффект - плод не отторгается как аллотрансплантат, благодаря блокаде клеточного иммунитета по отношению к его тканям. Однако в отношении других антигенов организм матери отвечает обычными иммунными реакциями.

Установлено, что иммунный ответ на HLA-антигены (в том числе отца) возрастает во время беременности и снижается к моменту родов. Активность же NK-клеток в первом триместре наиболее высокая, а затем постепенно снижается. Прогрессирующее возрастание их активности наблюдается при гестозах второй половины беременности.

В настоящее время широко распространена точка зрения, что в патогенезе поздних гестозов основное значение имеет нарушение толерантности аллогенной фенотипической системы. Среди других фактов важную роль отводят усилению киллерной активности лимфоцитов, что может быть связано с различными факторами, в том числе инфекциями.

В. В. Иванова с соавт. (1987) получила достоверную связь между тяжестью гестоза, высоким процентом мертворождений, преждевременных родов и вирусных инфекций в системе мать-плацента-плод. Они делают вывод о роли вирусных инфекций в развитии гестозов, при которых поражение плода не всегда сочетается с манифестной инфекцией матери.

Следует отметить низкие уровни Ig M у плодов и новорожденных и непроницаемость плацентарного барьера для материнских антител этого класса. В то же время они являются определяющими в защите организма. В. В. Ритова и соавт. (1976) считает, что развитию инфекции у плода и новорожденного способствует состояние иммунологической толерантности и дефектность иммунной системы плода в отношении синтеза антител Ig M при инфицировании за 2-4 нед до родов. Авторы полагают, что внутриутробные вирусные инфекции, возникшие в этот период протекают без включения антительного компонента.

Важное значение имеет и то обстоятельство, что Ig A не проходит через плацентарный барьер, а синтез собственного Ig A снижен. Этим объясняют тяжелое течение респираторных и кишечных вирусных инфекций в периоде новорожденности. Необходимо также подчеркнуть и тот факт, что период полураспада иммуноглобулинов составляет для Ig G - 20-24 дня, для Ig A - 5,8 дня, а для Ig M - 4,1 дня. Вполне вероятно, что плоду трансплацентарно передаются не только антитела, но и сигнал для синтеза антител в виде лимфоцитов "памяти".

В настоящее время получены данные и о других защитных механизмах в системе последа. Так показано, что размножение микроорганизмов в амниотической жидкости приводит к повышению уровня липополисахаридов, которые, активируя деятельность фетального трофобласта, приводят к усиленному синтезу ими IL-1, IL-6, IL-8, IL-10, TNF, активно участвуют в развитии воспалительных и иммунных реакций в системе мать-плацента-плод (О. А. Пустота на, Н. И. Бубнова, 1999). Так Е. Paradovska et al. (1996) в эксперименте на органной культуре плаценты и амниотических оболочек показали защитную роль TNF по отношению к инфекциям, вызванным вирусами простого герпеса 1 типа, энцефаломиокардита и везикулярного стоматита.

Важное значение в защите плаценты от биологических возбудителей придается экспрессии антигенов большого комплекса гистосовместимости (HLA 1 типа). Наиболее широко распространенные антигены этой группы - HLA-A, HLA-B, функционально тесно связанные с NK-клетками, на поверхности цитотрофобласта не экспрессированы. В качестве важнейшего антигена этой локализации рассматривают HLA-G, внутриклеточный транспорт которого блокируется вирусом простого герпеса (Schust D. J. et al., 1996).

Начато изучение протективного действия в репродуктивных тканях женщины дефензинов. В работе D. M. Svinarich et al. (1997) показано, что в эндоцервиксе, эндометрии и хорионе может быть обнаружена транскрипция дефензина 5. Среди цитокинов, связанных с длительно текущей генитальной инфекцией, в частности вызванной Chlamydia trachomatis в эксперименте у мышей, S. J. Blander, A. J. Amortegui (1997) важное значение придают IL-5 (основному цитокину, ответственному за эозинофилию), уровень которого повышается через 5 недель после первичной инфекции.

В настоящее время среди факторов противоинфекционной защиты существенное значение придается также интерферону. Интерферон, открытый Isaaks и Lindenmann в 1957 году, как антивирусный фактор, в настоящее время хорошо изучен. Установлено существование целой группы соединений - интерферонов, являющихся низкомолекулярными белками (молекулярная масса от 10 до 150 тыс. дальтон), обладающих свойствами неспецифической защиты клетки от чужеродных синтезов, в частности от размножения в клетках вирусов, хламидий, микоплазм - возбудителей с внутриклеточным характером размножения.

В настоящее время интерфероны относят к интерлейкинам. Известны три типа интерферонов: альфа (α), бета (β) и гамма (γ). Интерферон типа α-кислотостабильный низкомолекулярный белок (масса 10 тыс. Д), основной его функцией является внутриклеточная защита за счет выработки в клетке ряда белков и низкомолекулярных структур, блокирующих на рибосомах синтез de novo белков и ядерный синтез чужеродных нуклеиновых кислот.

Кроме того, α-интерферон стимулирует появление на мембранах группы специфических рецепторов, обладающих защитным действием, путем изменения мембранной проницаемости, а также активации различных клеточных рецепторов, включая рецепторы гистосоместимости.

β-интерферон-кислотолабильный белок (масса 20-40 тыс. Д) один из наименее изученных интерферонов, был впервые получен экспериментально в культурах опухолевых клеток и в настоящее время считается разновидностью β-интерферона, вырабатываемого в организме местно клетками различных органов. В связи с наличием в клетках разных органов большого числа рецепторов для β-интерферона, он практически не выходит в лимфу и кровяное русло, являясь по сути местным интерфероном.

γ-интерферон-кислотолабильный белок (масса 130-150 тыс. Д) представляет собой интерлейкин, в функции которого входит стимуляция ряда других интерлейкинов, усиливающих передачу информации с макрофагов на Т-лимфоциты в процессе стимуляции иммуногенеза. В связи с этим биологические функции этого типа интерферона весьма многообразны, включая антивирусное и антимикробное действие, антионкогенный эффект, антителостимулирующий эффект, действие на клеточный рост и дифференцировку.

В системе мать-плацента-плод интерфероны вырабатываются организмом матери, плодом и последом. Интерфероны, синтезируемые в организме матери имеют свойства, и α, β и γ. Их уровни могут изменяться в зависимости от инфекции, переносимой женщиной во время беременности. Они выполняют защитную функцию. Альфа и бета интерфероны, имеющие низкую молекулярную массу, все же не проникают через неповрежденный плацентарный барьер. Вероятно, это связано с его избирательной проницаемостью для интерферонов, которые являются антагонистами гормона роста. Не исключено, что малый вес плодов, страдающих внутриутробными инфекциями, в какой-то мере обусловлен и тормозящим воздействием интерферона.

В то же время синтез гамма-интерферона в организме матери задержан в связи с его более выраженным по сравнению с α-интерфероном эффектом на Т-киллеры, в том числе их способность усиливать реакцию иммунного отторжения в системе свой - чужой.

Интерфероны синтезируются также клетками плаценты. В ткани плаценты определяются три различных по своим свойствам типа интерферонов: α, γ и особый плацентарный интерферон. Установлено, что присутствие интерферонов в плаценте связано с имеющимся в ней инфекционным процессом, в первую очередь обусловленным вирусами и другими возбудителями, для которых характерно внутриклеточное размножение (микоплазмы, хламидии).

В литературе имеется лишь небольшое число работ, указывающих на наличие интерферона в плаценте. Прежде всего это экспериментальные работы на мышах и крысах, в которых прослежено наличие α-интерферона в различные сроки беременности. Однако, сведения о его роли в барьерной функции органа практически отсутствуют.

В отдельных исследованиях показана способность α-интерферона защитить плод от внутриутробной герпетической инфекции (Zdravkovic M. et al., 1997).

Функциональная система мать - плод

От плода в различные периоды внутриутробного развития исходят многочисленные сигналы, посылаемые через различные системы его организма, которые воспринимаются соответствующими системами матери и под влиянием которых изменяется деятельность многих органов и функциональных систем материнского организма.

Вся деятельность организма женщины во время беременности должна быть направлена на максимальное обеспечение нормального развития плода и поддержание необходимых условий, обеспечивающих развитие плода по заданному генетическому плану.

Ведущее значение в осуществлении восприятий импульсов, поступающих в материнский организм от плода, принадлежит нервной системе; При беременности нервные окончания матки (рецепторы) первыми начинают реагировать на многочисленные раздражения; поступающие от растущего плодного яйца.

Наибольшие изменения во время беременности претерпевает центральная нервная система (ЦНС). Начиная со второй половины беременности происходит прогрессирующее усиление тормозного процесса в Коре головного мозга, которое достигает своего максимума к моменту родов

При появлении различных стрессовых ситуаций (страх, волнения, сильные переживания и пр.) в ЦНС беременной могут возникать другие очаги стойких возбуждений, что ослабляет действие доминанты беременности. А это в свою очередь нередко приводит к патологическому течению беременности и нарушениям развития плода. Именно поэтому всем беременным женщинам необходимо по возможности создавать оптимальные условия психического покоя как на работе, так и в домашних условиях.

Наряду с изменениями в ЦНС большие изменения во время беременности происходят в эндокринном аппарате женщины.

В течение первых 4 мес беременности в яичнике функционирует желтое тело, которое вырабатывает большое количество прогестерона, а также эстрогенов. Прогестерон способствует накоплению в децидуальной оболочке необходимых питательных веществ, ферментов и других важных веществ, необходимых для правильного развития эмбриона и плода. Кроме того, прогестерон расслабляет матку и тем самым предотвращает нежелательное воздействие на нее сокращающих веществ. После 4 мес в связи с обратным развитием желтого тела задача продукции прогестерона переходит к плаценте.

Большое значение в осуществление физиологических взаимоотношение системы мать - плод имеют изменения обмена веществ, наблюдаемые при беременности. Не существует ни одного вида обмена веществ, который бы в той или иной мере не изменялся во время беременности. Изменения белкового обмена характеризуются накоплением в организме беременной белковых веществ, которые являются пластическим материалом для построения тканей и органов плода. Накопление белковых веществ в материнском организме необходимо в основном для роста и развития матки и молочных желез - органов, которые во время беременности достигают наибольшего развития.

Значительным изменениям подвергается и обмен жиров. Отмечается повышенное отложение жира на бедрах, животе, в области молочных желез. В крови беременных отмечается увеличение концентрации нейтрального жира и холестерина. В крови плода липидов содержится в 1½-3 раза меньше, чем в крови матери. Накопление жиров в организме матери и плода необходимо для создания запасов энергии. Расход энергии особенно велик в родах.

Существенные изменения происходят и в обмене углеводов. Углеводы (в основном в виде гликогена) в повышенных количествах откладываются в печени матери и плода, в плаценте, в матке. Из организма матери углеводы (в основном в виде глюкозы) переходят к плоду. Глюкоза необходима плоду прежде всего для поддержания процессов так называемого анаэробного гликолиза - специфического процесса существования плода.

Существенные изменения происходят в водном и минеральном обмене во время беременности. Беременность сопровождается выраженной задержкой жидкости в организме женщины.

Повышенное количество жидкости жизненно необходимо плоду. Водная среда играет важнейшую роль в трансплацентарном переходе всех питательных веществ от матери к плоду и в выведении из организма плода продуктов обмена веществ. Вода необходима для образования амниотической жидкости. Большое количество воды содержится в организме плода и в плаценте.

Значительные изменения претерпевает электролитный обмен при беременности. В процессе развития плода возрастают его потребности в солях кальция, калия, фосфора, магния и железа. Соли кальция и фосфора необходимы плоду для построения скелета и других тканей. При дефиците этих солей в материнском организме у беременной начинают расходоваться депо этих соединении, что проявляется разрушением скелета и зубов. Соли фосфора, крометого, необходимы для построения нервной системы плода.

Во время беременности расходуется значительное количество железа, что связано с процессами синтеза гемоглобина у плода. Уменьшение содержания солей железа в материнском организме сопровождается развитием во время беременности железодефицитной анемии.

Большое значение для установления правильных взаимоотношений системы мать - плод имеет обмен витаминов. Витамины необходимы для физиологического течения беременности, правильного роста и развития плода, подготовки к родам и для дальнейшего развития новорожденного. Во время беременности средняя суточная потребность почти во всех витаминах возрастает в 2 раза и более. Поэтому для поддержания витаминного баланса на должном уровне во время беременности необходимо обеспечить повышенное поступление витаминов с пищей, а также в виде лечебных препаратов.

При беременности повышается нагрузка на все органы и системы материнского организма. Происходят выраженные сдвиги со стороны дыхательной, сердечнососудистой, пищеварительной и выделительной системы материнского организма. Эти изменения имеют физиологический характер и направлены на удовлетворение растущих потребностей плода.

Начиная с первого триместра беременности наблюдается увеличение минутного объема дыхания. А это в свою очередь обусловливает лучшее снабжение плода кислородом.

Существенным физиологическим изменениям подвергается и функция сердечнососудистой системы во время беременности. Начиная с первого триместра происходит заметное увеличение объема циркулирующей крови

Эти изменения сердечной деятельности беременной обеспечивают правильное функционирование маточно-плацентарного кровообращения и потребности растущего плода в кислороде и необходимых питательных веществах.

Во время беременности наблюдаются многообразные изменения со стороны пищеварительной системы, обеспечивающей непрерывное поступление в организм плода необходимых ему веществ.

Это касается прежде всего печени. Нормально развивающаяся беременность предъявляет повышенные требования к этому органу, поскольку растущий плод нуждается во все возрастающем количестве питательных веществ. В то же время от плода к матери поступают продукты его обмена, которые выводятся затем через материнский организм

Определенное напряжение во время беременности испытывает выделительная система матери. Снижается тонус мочевыводящих путей, возрастает емкость мочевого пузыря, что связано с воздействием прогестерона желтого тела, а затем и плаценты. Изменяется и функциональная активность почек, отмечается возрастание клубочковой фильтрации на 40-50% по сравнению с таковой у небеременных женщин. Усиленная функция почек способствует повышенному выделению с мочой продуктов обмена не только матери, но и плода.

Особого внимания во время беременности заслуживает иммунная система, поскольку возникшие изменения способствуют удержанию в матке гомотрансплантата (плод). Современными исследованиями установлено, что антигенная активность плода возникает постепенно.

Установлено, что все иммунные системы материнского организма находятся в состоянии некоторого торможения.

Иммунологические взаимоотношения между организмами плода и матери достигают такой выраженности, что зрелый и доношенный плод начинает изгоняться из матки в результате развития маточных сокращений.

До настоящего времени мы в основном рассматривали изменения, которые возникают в организме матери при беременности и которые в той или иной степени оказывают свое воздействие на плод.

Иммунология репродукции занимается изучением иммунных механизмов, участвующих в развитии половых клеток мужчин и женщин, оплодотворении, беременности, родах, послеродовом периоде, а также при гинекологических заболеваниях.

В первые недели беременности происходит перестройка иммунной системы матери и формирования механизмов адаптации к присутствию развивающего в утробе организма.

Несмотря на то, что эмбрион развивается из яйцеклетки- клетки репродуктивной системы женщины, после оплодотворения генетический код будущего организма состоит из комбинации ДНК матери и отца и является уникальным. Клетки будущего организма продуцируют собственные белки и иммунные агенты, которые могут взаимодействовать с иммунной системой матери как непосредственно на ранних этапах, так и через гемато-плацентарный барьер после формирования детского места (плаценты).

Во время беременности и раннего послеродового периода изменяется как количественный, так и качественный состав иммунокомпетентных клеток периферической крови. С начала беременности и в течение всего срока беременности абсолютное количество Т-лимфоцитов и их основных разновидностей (CD4 и CD8) уменьшается. В послеродовом периоде количество T-лимфоцитов в крови повышается. Эти изменения отражают общую картину изменений иммунной системы в организме матери во время беременности.

Однако говорить о беременности как об иммунодефицитном состоянии вряд ли возможно. Поскольку, несмотря на состояние подавления активности клеток иммунного ответа женщины к клеткам плода, у беременной сохранен динамический антиген-специфический иммунный ответ T-лимфоцитов, которые отвечают за клеточное звено иммунного ответа. Большое число пролиферирующих T-лимфоцитов в крови беременной женщины четко определяется уже на 9-10 неделе после зачатия. Эти изменения достигают максимума во втором триместре беременности. После 30 недель беременности почти все пролиферировавшие клетки исчезают. К моменту родов уровень Т-лимфоцитов возвращается к нормальным значениям.

Доказано, что Т-лимфоциты матери распознают антигены плода. Этот антиген-специфический иммунный ответ на отцовские антигены приводит к увеличению количества и накоплению определенных видов T-лимфоцитов. Во время беременности происходит «обучение» T-лимфоцитов матери к унаследованным от отца антигенам тканевой совместимости.

Во время беременности в матке содержится большое количество и других клеток, отвечающих за неспецифический иммунный ответ - макрофагов, располагающихся в эндометрии и миометрии. Их количество регулируется гормонами яичников. Макрофаги содержат рецепторы к эстрогенам- женским половым гормонам, также матка выделяет специальные вещества, которые способствуют миграции макрофагов в область детского места.

Хорошо известна продукция антител против антигенов отца во время беременности. При нормальном развитии беременности отцовские антигены, циркулирующие в крови иммунокомплексы с отцовскими антигенами и свободные антитела к отцовским антигенам определяются с ранних сроков беременности. Иммунный ответ матери направлен против некоторых, но не против всех несовпадающих тканевых антигенов плода. Роль антител, направленных против отцовских антигенов, в иммунном гомеостазе при беременности до сих пор до конца не ясна. Есть данные, что женщины, совместимые с мужем по тканевым антигенам, не вырабатывают достаточного количества антител к антигенам плода и страдают привычным невынашиванием беременности. Иммунизация таких женщин отцовскими Т и B-лимфоцитами с последующим появлением антител к тканевым антигенам мужа приводит к восстановлению фертильности и рождению доношенных детей.

В настоящее время предполагаются следующие механизмы защитного действия антител к антигенам плаценты при беременности:

1. Подавление клеточно-зависимого иммунитета.

2. Подавление цитотоксичности клеток-киллеров.

3. Поддержка роста и дифференцировки плаценты за счет выработки специфических гормонов.

4. Улучшение симптомов аутоиммунных заболеваний.

5. Развитие противовирусной защиты плода, в частности против ВИЧ-инфекции.

Было обнаружено несколько белковых молекул, подавляющих выработку клетками-киллерами фактора некроза опухоли (ТНФ), который может повреждать плаценту. Спермин, фактор, в больших количествах присутствующий в плацентарной жидкости, противодействует иммунному ответу матери, подавляя продукцию ТНФ и других провоспалительных белков. Было показано, что для подавления выработки ТНФ спермином необходим еще один ко-фактор, гликопротеин плазмы плода фетуин. Уровни обоих белков в околоплодных водах и в крови плода достаточно велики, а соотношение их оптимально для эффективного подавления секреции ТНФ. Фактор ранней беременности (EPF) тоже, по всей видимости, является иммуномодулирующим протеином. EPF является низкомолекулярным белком, который вырабатывается живыми эмбрионами до имплантации. Он появляется в сыворотке крови беременных женщин через 48 часов после оплодотворения, обладает иммуносупрессивным действием и не обнаруживается в случае гибели оплодотворенного яйца. Это чувствительный маркер, отражающий жизнеспособность зародыша.

Подводя итог анализу развития иммунологических взаимоотношений между матерью и плодом, можно сказать следующее. Трофобласт - эмбриональный листок из которого впоследствии развивается плацента- пролиферирует, внедряется в ткани матки и поступает в кровоток матери. В результате этого образуются антиотцовские антитела, которые фиксируются на плаценте. Они обладают иммунотропным действием, блокируя эфферентное звено иммунного ответа на местном уровне. Плацента становится иммунологически привилегированной тканью. Трофобласт выступает также в роли иммуносорбента, связывая антитела, являющиеся иммунорегуляторами, и устанавливая иммунный камуфляж, блокирующий эфферентное звено иммунного ответа. У женщин с привычным невынашиванием беременности, с бесплодием неясного генеза, с неоднократными неудачными попытками ЭКО, иммунопротективное действие трофобласта не включается полностью, что приводит к инициации клеточного и гуморального иммунного ответа против беременности.

Супрессия специфического звена иммунного ответа матери при беременности не просто сопровождается, но и компенсируется активацией системы неспецифического иммунитета. Это означает, что при беременности возникает новое уникальное равновесное состояние между специфическим и неспецифическим иммунитетом матери, при котором центральной клеткой иммунной адаптации матери становится не лимфоцит, но моноцит.

Активация системы естественного иммунитета во время беременности обеспечивает эффективную защиту организма от большинства бактериальных инфекций. Однако этого часто бывает недостаточно для элиминации внутриклеточных возбудителей, таких как листерии или вирусы. Поэтому вирусные инфекции во время беременности могут протекать тяжелее, чем вне беременности. Гиперактивация системы естественного иммунитета во время беременности может служить одним из факторов развития таких нарушений, как невынашивание беременности и нефропатия беременных (системная эндотелиальная дисфункция).

Антифосфолипидный синдром (АФС) является одной из причин привычного невынашивания беременности. Фосфолипиды являются важной составляющей всех биологических мембран, поэтому появление антифосфолипидных антител может расстроить функцию клеток, стать причиной развития воспалительной реакции, вызвать нарушения свертывания крови. Антифосфолипидные антитела обнаруживаются у 22% женщин с привычным невынашиванием беременности. Частота АФС повышается на 15% с каждым следующим выкидышем. Таким образом, АФС является не только причиной, но и осложнением привычного невынашивания беременности. Повышение титра антинуклеарных антител обнаруживаются у 22% женщин с привычным невынашиванием беременности и у 50% женщин с бесплодием и неудачей ЭКО. Антитела к ДНК могут быть направлены против ДНК, полинуклеотидов и гистонов.

Известно, что развитие аутоиммунного тиреоидита может быть связано с аутоиммунным ответом на тиреоглобулин, транспортным белком, переправляющим гормоны щитовидной железы в кровь. На следующем этапе заболевания могут поражаться митохондрии клеток щитовидной железы, что сопровождается появлением антител к тиреоидной пероксидазе, а иногда и к микросомальному тиреоидному антигену. Далее следует включение в аутоиммунный процесс улеток специфицеского иммунного ответа. Считается, что именно повышение уровня этих клеток и является решающим фактором запуска реакций отторжения беременности при аутоиммунных процессах щитовидной железы.

Из гинекологических заболеваний к развитию иммунологических нарушений часто приводят хронические воспалительные заболевания, генитальные инфекции и эндометриоз. Часто бывает трудно выделить первичный фактор нарушений: являются ли гинекологические заболевания следствием иммунодефицитного состояния, или наоборот.

Также важным этапом являеься исследование тканевых антигенов супругов на совместимость, что также нередо является прининой первичного невынашивания беременности.

Методы лечебных воздействий при иммунологических нарушениях репродуктивной функции зависят от характера нарушений, степени нарушений и общего состояния женщины.

Наиболее эффективно проведение лечения в три этапа:

1.Общая иммунокоррекция и лечение сопутствующих заболеваний.

2.Подготовка к беременности.

3.Лечение во время беременности.

Общая иммунокоррекция и лечение сопутствующих заболеваний направлено на устранение иммунодефицитного состояния, выявленного при обследовании пациентки, лечение воспалительных заболеваний половых органов и генитальных инфекций, устранение дисбактериоза кишечника и влагалища, проведение общеукрепляющего лечения и психологической реабилитации. Наиболее успешным лечение невынашивания беременности бывает тогда, когда иммунологическая подготовка к беременности начинается как минимум за месяц до прекращения предохранения.

При наличии антифосфолипидного синдрома лечение обычно начинают с низких доз нестероидных противоспалительных препаратов, начатое за месяц до отмены контрацепции. В дальнейшем к этому лечению может присоединяться назначение препаратов гепаринового ряда (с 6-го дня следующего после начала предыдущего этапа терапии) и внутривенного введения иммуноглобулинов. Дозы и выбор препаратов должны быть строго индивидуальны. Чем больше выкидышей было в анамнезе, тем дозировка препаратов будет больше, и тем больше будет количество компонентов лечения.

При наличии анти-ДНК и антитиреоидных антител ведущая роль в подготовке к беременности принажлежит внутривенному капельному введению иммуноглобулинов. Следует учитывать тот факт, что период полужизни иммуноглобулинов составляет около 25 дней, поэтому инфузии проводятся с раз в месяц (как правило, от 1 до 3 капельниц в месяц). Дозировка препаратов подбирается индивидуально. Наиболее эффективным бывает насыщение организма иммуноглобулинами на начальном этапе, и поддерживающая терапия (раз в месяц) в дальнейшем.

При иммунных формах невынашивания, связанных с иммнологической несовместимостью тканевых антигенов партнеров и при повышении активности B-клеток имеет иммунизация женщины лимфоцитами мужа. При значительной степени совпадения генотипа супругов по тканевым антигенам может быть рекомендовано проведение иммунизации пациентки донорскими лимфоцитами. Через 3-4 недели после иммунизации лимфоцитами желательно исследование крови жены на анти-тканевые антитела. В некоторых случаях, особенно при значительном повышении уровня B-клеток, иммунизация лимфоцитами может проводиться каждые 5-7 недель вплоть до 10 недели беременности.

После наступления беременности продолжается поддерживающая терапия. Женщины, начавшие иммуннотерапию уже после наступления беременности имеют риск выкидыша в 2-3 раза больший по сравнению с теми женщинами, подготовка к беременности которых была начата своевременно. Дозы и препараты после наступления беременности подбираются индивидуально. Независимо от исходных нарушений, после наступления беременности большое значение имеет периодическое проведение исследования количественны показателей перефирической крови и анализа крови на аутоантитела с проведением адекватной коррекции в случае обнаружения отклонений.

Анатомо-физиологические особенности, резервные возможности Зародыши млекопитающих уже на самых ранних стадиях развития содержат антигены, контролируемые отцовским геномом, чужеродные для материнского организма. В связи с этим можно было бы ожидать проявлений специфического иммунного ответа со стороны иммуной системы матери. Наиболее опасной для плода формой иммунного ответа матери является клеточно-опосредованный иммунный ответ, при котором после распознавания чужеродных антигенов плода материнские Т-лимфоциты (Th1) активируются и начинают продуцировать цитокины (гамма-интерферон, туморнекротизирующий фактор), активирующие цитотоксические клетки - эффекторы (естественные киллеры и цитотоксические лимфоциты CD8 +). В случае развития такой формы клеточно-опосредованного иммунного ответа против чужеродных антигенов плода активированные клетки-эффекторы могли бы проникнуть в организм плода через плаценту и вызвать прерывание беременности. Однако при нормальном течении беременности этого не происходит. Главными факторами, обеспечивающими сохранение беременности, являются изменения гормонального фона в сторону усиленной продукции стероидного гормона - прогестерона, анатомо-физиологические особенности плаценты, продукция фето-плацентарным комплексом биологически активных регуляторных молекул, в том числе - цитокинов, обеспечивающих превалирование механизмов гуморального иммунного ответа иммунной системы матери над клеточно-опосредованным ответом, что приводит к угнетению механизмов клеточно-опосредованного ответа антагонистическими цитокинами.

Беременность женщины протекает на фоне существенных изменений гормонального фона. Начиная с момента оплодотворения яйцеклетки и ее имплантации в эндометрий, активизируется продукция гипоталамического люлиберина - рилизинг-фактора лютеинизирующего гормона, контролирующего секрецию лютропина - лютеинизирующего гормона гипофиза, который, в свою очередь, инициирует продукцию желтым телом яичника стероидного гормона - прогестерона. Функции гонадотропного лютеинизирующего гормона гипофиза дублирует хорионический гонадотропин, также активирующий продукцию прогестерона желтым телом яичника, причем в организме беременной женщины даже мононуклеары крови продуцируют хорионический гонадотропин (Рис.3-4).

Прогестерон, как и другие половые стероидные гормоны, угнетает многие функции иммунной системы, чем частично обеспечивается торможение иммунного ответа на чужеродные (унаследованные от отца) антигены плода и сохранение беременности. В частности, под влиянием прогестерона лимфоциты беременной женщины начинают продуцировать вместо цитокинов, активирующих иммунный ответ, молекулы, угнетающие пролиферацию лимфоцитов и продукцию активирующих цитокинов естественными киллерами. Прогестерон избирательно активирует продукцию Т-лимфоцитами (Тh2) интерлейкина-4, угнетающего механизмы клеточного иммунного ответа, который мог бы привести к отторжению плода как источника чужеродных антигенов. Прогестерон индуцирует продукцию фактора, блокирующего активность естественных киллеров в синергизме с цитокинами Th2-типа (Рис.3-4).

Препятствием для эффективного иммунного ответа на месте имплантации в матке служит то, что лимфоциты эндометрия отличаются от циркулирующих лимфоцитов крови: их рецепторы не способны распознавать так называемые трансплантационные антигены (антигены гистосовместимости). Ограничение иммунного ответа иммунной системы матери на чужеродные антигены плода обеспечивается сниженным количеством антигенов гистосовместимости на клетках трофобласта и усиленной продукцией молекул, угнетающих активацию лимфоцитов. На ворсинах клеток трофобласта находятся особые антигены гистосовместимости (HLA-G), защищающие плод от литического действия естественных киллеров материнской крови. Даже в геноме эмбриона имеются гены, ответственные за синтез специального белка - фактора ранней беременности, основной функцией которого является снижение активности Т-лимфоцитов и естественных киллеров материнского организма. В период имплантации оплодотворенной яйцеклетки в эндометрий и в последующий период клетками эндометрия и плаценты (трофобласта) и клетками региональных лимфатических узлов синтезируются разные молекулы, сходные по способности так или иначе препятствовать запуску иммунного ответа на чужеродные антигены плода. Нелимфоидными клетками эндометрия и трофобласта продуцируются и цитокины, среди которых особого внимания заслуживают интерлейкин-10 и трансформирующий ростовой фактор бета, которые дублируют функции друг друга в угнетении клеточно-опосредованного иммунного ответа. В эксперименте удавалось предотвратить самопроизвольный выкидыш у мышей путем введения им интерлейкина-10. Все эти молекулы угнетают процессы пролиферации Т-лимфоцитов, функциональную активность лимфоцитов, продукцию активирующих цитокинов, активность цитотоксических Т-лимфоцитов. В циркулирующей крови беременной женщины уменьшена доля активированных Т-лимфоцитов, способных участвовать в клеточном иммунном ответе.

Таким образом предотвращается возможность развития специфического клеточно-опосредованного иммунного ответа со стороны иммунной системы организма матери на чужеродные антигены плода, который мог бы привести к отторжению плода, т.е. к прерыванию беременности. Нормальная беременность характеризуется отсутствием выраженного материнского клеточно-опосредованного иммунитета против чужеродных (отцовских) антигенов плода, что является условием успешного вынашивания плода. При этом гуморальный (антительный) иммунный ответ на инфекционные антигены в организме беременных сохраняется на нормальном уровне. При беременности фетоплацентарные ткани спонтанно секретируют цитокины, угнетающие клеточный иммунный ответ и способствующие гуморальному ответу: интерлейкины 4, 5, 10 и трнсформирующий ростовой фактор бета. Клетки трофобласта на всех стадиях беременности активно продуцируют интерлейкин-10, биологическая активность которого проявляется угнетением клеточного иммунного ответа. Во втором и третьем триместрах беременности в крови у женщин существенно повышено количество лимфоцитов, отвечающих секрецией интерлейкина-4 на контакт с отцовскими лейкоцитами, которые содержат чужеродные антигены, унаследованные плодом. В третьем триместре беременности снижается способность мононуклеаров крови продуцировать интерлейкин-2. Это говорит о развитии в организме беременной специфического иммунного ответа на чужеродные антигены плода, но с перевесом гуморальной формы ответа над клеточной, чем обеспечивается отсутствие материнского клеточно-опосредованного иммунного ответа против чужеродных (отцовских) антигенов плода (Рис.3-5).

Прогрессирование беременности сопровождается также снижением функциональной активности естественных киллеров организма матери, что способствует сохранению плода, поскольку именно этим клеткам отводится роль основных клеток-эффекторов в отторжении плода. Способность угнетать функциональную активность естественных киллеров приписывают молекулам, секретируемым трофобластом. Естественные киллеры, продуцирующие гамма-интерферон, играют роль пусковых клеток при развитиии клеточно-опосредованного иммунного ответа. Угнетение естественных киллеров и снижение продукции гамма-интерферона способствует превалированию дифференцировки Th2, продуцирующих интерлейкин-10, угнетающий клеточно-опосредованный иммунный ответ (Рис.3-5).

Особенностью гуморального иммунного ответа в организме беременной женщины является переключение с продукции цитотоксических иммуноглобулинов подкласса G2 на продукцию нецитотоксических иммуноглобулинов подкласса G1. Тем самым предотвращается возможность развития реакций антитело-зависимой цитотоксичности, направленных на отторжение плода. В защите плода от цитотоксических антител матери имеет значение механизм связывания этих антител на антигенах гистосовместимости трофобласта. При этом трофобласт выполняет роль своеобразного иммуносорбента, защищающего плод от гуморальных факторов агрессии со стороны организма матери. Гистонесовместимость организмов матери и плода может привести к выработке в организме матери так называемых “блокирующих” антител, которые могут способствовать благоприятному развитию беременности, препятствуя созреванию цитотоксических лимфоцитов за счет блокирования антигенов на поверхности клеток.

Трофобласт устойчив к иммуноагрессии со стороны иммунной системы организма матери за счет присутствия на поверхности клеток трофобласта ингибиторов системы комплемента. Такие молекулы ингибируют активность любых компонентов комплемента, откладывающихся на мембранах плода. Этим исключается возможность цитотоксических последствий активации системы комплемента под влиянием комплексов антител с антигенами и комплемент - опосредованного повреждения трофобласта. Клетки трофобласта отличаются от всех других клеток организма пониженным содержанием антигенов гистосовместимости. Трофобласт дополнительно защищает плод от проникновения активированных материнских лейкоцитов благодаря способности связывать активированные лимфоциты и индуцировать в этих клетках программированную гибель - апоптоз.

Надежность иммунологической системы поддержания беременности обеспечивается дублированием факторов и воздействий, ограничивающих возможности развития клеточно-опосредованного иммунного ответа иммунной системы организма матери на чужеродные (отцовские) антигены плода (Табл.3-1). К числу внутренних резервов фето-плацентарного комплекса можно отнести способность вырабатывать регулирующие иммунный ответ молекулы, в том числе цитокины, присущая многим клеткам: нелимфоидным клеткам плода, трофобласта, эндометрия, и иммунокомпетентным клеткам региональных лимфоузлов. В гормональной цепочке, способствующей сохранности плода, также прослеживается принцип функционального дублирования: функция инициации синтеза прогестерона дублируется гонадотропным (лютеинизирующим) гормоном гипофиза и хорионическим гонадотропином.

Вместе с тем, защитные функции иммунной системы беременной женщины, обусловленные синтезом антител, не только не снижаются, но даже активизируются в отношении патогенных бактерий. Физиологическая беременность сопровождается компенсаторным увеличением количества активированных моноцитов в периферической крови, что в сочетании с продукцией специфических антител обеспечивает высокий уровень антибактериальной защиты. Хуже обстоит дело с противовирусной и противогрибковой защитой организма беременной, т.к. для защиты от вирусов и грибов необходимы механизмы клеточно-опосредованного иммунного ответа, которые при беременности резко ослаблены.

Плацента выполняет роль своеобразного фильтра, с одной стороны, препятствующего свободному транспорту антигенов, антител, клеток, а, с другой стороны, обеспечивающего прохождение из кровотока матери в кровоток плода специфических антител класса IgG, т.е. создание пассивного иммунитета плода, призванного защищать новорожденного ребенка в течение первых 3 - 4 месцев жизни.

Таблица3-1.

Иммунологические механизмы, влияющие на сохранение беременности

Иммунологические сдвиги, способствующие сохранению беременности

Иммунологические сдвиги, способствующие прерыванию беременности

Сниженное количество анигенов гистосовместимости на клетках трофобласта

Повышение количества анигенов гистосовместимости на клетках трофобласта под влиянием интерферонов

Усиленная продукция клетками фетоплацентарного комплекса молекул, ингибирующих клеточно-опосредованный иммунный ответ

Избыточная продукция в организме беременной провоспалительных цитокинов, активирующих клеточно-опосредованный иммунный ответ

Преимущественная дифференцировка Тh2 и угнетение функций Тh1

Преимущественная дифференцировка Тh1, индукция клеточно-опосредованного иммунного ответа

Снижение функциональной активности естественных киллеров

Повышение количества и функциональной активности естественных киллеров

Преключение синтеза иммуноглобулинов с подкласса G2 на подкласс G1, синтез “блокирующих” антител

Повышенное количество ингибиторов системы комплемента на клетках трофобласта

С началом функционирования кровообращения в фетоплацентарном комплексе у плода создается пассивный иммунитет за счет прямого трансплацентарного перехода материнских антител иммуноглобулинов G в кровоток плода. Проникновение иммуноглобулинов G через трофобласт связано с их способностью соединяться с Fc - рецепторами на внешней мембране трофобласта, что защищает молекулы IgG от разрушения лизосомальными ферментами в процессе пиноцитоза.

Факторы риска. К нарушению нормальных иммунологических взаимоотношений организма матери и плода и к прерыванию (невынашиванию) беременности приводят различные эндогенные и экзогенные факторы, которые рассматриваются как факторы риска: генетические дефекты, нейроэндокринная патология, различные заболевания матери, травмы, осложнения беременности и, в особенности, инфекционные заболевания матери. В большинстве случаев прерывания беременности (31%) оно наступает вскоре после имплантации. Причинами могут быть генетические дефекты (3 - 7% случаев), анатомические аномалии репродуктивного тракта, эндокринные нарушения, инфекции и др. Но в подавляющем большинстве случаев (60 - 70%) “необъяснимых” самопроизвольных абортов выявляется роль иммунологических факторов в их патогенезе.

Действие многих из перечисленных факторов риска (Табл.3-2) реализуется с участием иммунологических механизмов, включающихся под влиянием этих факторов и приводящих в конечном итоге к прерыванию беременности. Те же факторы риска могут привести к перинатальной патологии ребенка в случае благополучного завершения беременности родами.

Таблица.3-2

Факторы риска, влияющие на иммунную систему женщины и плода

в период беременности

Вирусные инфекции вызывают у беременных женщин активацию естественных киллеров, которая способствует самопроизвольному прерыванию беременности. У женщин, в анамнезе которых повторяются невынашивания беременности, в крови повышено количество естественных киллеров, проявляющих повышенную цитотоксическую активность.

Бактериальные инфекции нарушают характерные для беременных женщин свойства макрофагов. Под влиянием бактериального липополисахарида макрофаги начинают усиленно продуцировать и секретировать провоспалительные цитокины (интерлейкин-1, туморнекротизирующий фактор-альфа), усиливающие синтез простагландина Е2 амниотическими клетками, клетками хориона. В случаях избыточного синтеза простагландин Е2 вызывает сокращение гладкой мускулатуры матки, являясь одним из важных звеньев в развитии преждевременных родов. В пользу этого свидетельствует тот факт, что у беременных с клиническими признаками невынашивания и инфекции уровень провоспалительных цитокинов в сыворотке крови существенно повышен.

В случаях самопроизвольного аборта в тканях плаценты существенно повышено содержание гамма-интерферона, туморнекротизирующего фактора, интерлейкина-2 по сравнению с их содержанием в плаценте при нормальной беременности. Мононуклеары периферической крови женщин, имеющих в анамнезе самопроизвольные аборты, реагируют усиленной пролиферацией и продукцией цитотоксических цитокинов на контакт с экстрагированными из трофобласта антигенами. У подавляющего большинства этих женщин в культурах мононуклеаров крови выявлена продукция цитокинов Th1 - типа(гамма-интерферона и туморнекротизирующего фактора), в то время как у здоровых женщин контрольной группы мононуклеары в тех же условиях продуцировали преимущественно цитокин типа Th2 - интерлейкин-10. Эти наблюдения свидетельствуют о том, что иммуный ответ Th2 - типа является естественным ответом на антигены трофобласта, а развитие иммунного ответа Th1 - типа представляет собой отклонение от нормы и может вести к прерывнию беременности.

Среди факторов риска, влияющих на иммунную систему беременной женщины, важное место занимают осложнения беременности , а среди них - преэклампсия, которая ассоциирована с нарушениями плацентации и дисфункциями эндотелиальных клеток, с активацией Т-клеток, естественных киллеров, нейтрофилов, с усилением продукции цитокинов Th1-типа. Нарушение иммунорегуляции в организме беременной женщины предшествует клиническим признакам преэклампсии: уровни интерлейкина-2 и туморнекротизирующего фактора альфа повышены в первом триместре в сыворотке крови беременных женщин, у которых через 28 недель развивается преэклампсия. У женщин с клиническими признаками преэклампсии уровень интерлейкина-4 в крови повышен в большей степени, чем при физиологическом течении беременности.

Фактором риска, влияющим на иммунную систему, является для беременной женщины любой стресс , который влияет не только на ее иммунную систему, но и на иммунную систему плода. Рождение недоношенного, маловесного ребенка после стресса, перенесенного матерью, служит причиной дополнительного стресса для матери, у которой в этом случае проявляются признаки иммунодефицита. Стресс связан с повышением уровня эндогенных кортикостероидов, которые в организме беременной могут выступить в качестве антагонистов половых стероидов и нарушать гормональное равновесие, благоприятное для сохранения беременности.. Стресс может быть одной из причин повышения количества естественных киллеров и их активации., что ведет к прерыванию беременности. В результате длительного воздействия очень громких звуков в период беременности у новорожденных развивается иммунодефицитное состояние с клеточными и гуморальными дефектами, с неспособностью к антительному ответу на инфекцию.

Факторами риска для беременных женщин являются вредные привычки: курение и алкоголизм , которые влияют на их иммунную систему, на качество грудного молока и на иммунную систему плода. В частности, прием алкоголя во время беременности приводит к накоплению в крови и в грудном молоке провоспалительного цитокина интерлейкина-8, что способствует развитию мастита. Пренатальное воздействие алкоголя отражается на гормональном и иммунном статусе новорожденных, меняется характер ответа на стресс, снижается продукция АКТГ в ответ на провоспалительные цитокины, снижается способность отвечать лихорадкой на повышение уровня интерлейкина-1, параллельно снижается резистентность новорожденного к инфекциям.

Прием наркотиков в период беременности чреват развитием иммунодефицитов у новорожденных. В частности, прием кокаина во время беременности снижает продукцию иммуноглобулина G и продукцию цитокинов лимфоцитами новорожденного. Соответственно у такого новорожденного ребенка снижен и гуморальный и клеточный иммунный ответ и снижена противоинфекционная защита.

Пренатальный контакт плода с аллергенами, вдыхаемыми матерью , приводит к соответствующей перестройке его иммунной системы.. При наличии генетической предрасположенности к аллергии, т.е. при наличии аллергии хотя бы у одного из родителей, пренатальный контакт плода, начиная с 22 недель, с вдыхаемыми матерью аллергенами может привести к раннему развитию у него аллергического заболевания, например, бронхиальной астмы. В течение первых 6 месяцев жизни в крови ребенка обнаруживаются материнские иммуноглобулины G против пыльцовых аллергенов, а позднее в организме ребенка вырабатываются собственные антитела, относящиеся преимущественно к иммуноглобулинам G1 субкласса. Таким образом, вдыхаемые аллергены становятся факторами риска не только для матери, но и для ребенка во внутриутробном периоде его развития.

Недостаточность питания представляет наибольшую опасность для незрелой иммунной системы плода на ранних стадиях онтогенеза. Белково-энергетическое голодание беременной женщины приводит к развитию иммунодефицитов как у матери, так и у плода. У недоношенных маловесных новорожденных детей с гипотрофией, у которых вес не соответствует сроку беременности, стойко снижено количество Т-лимфоцитов, длительно сохраняются дефекты клеточного иммунитета и отставание в синтезе собственных иммуноглобулинов. В отличие от них, преждевременно родившиеся дети (нормотрофики) с весом, соответствующим сроку беременности, имели слабо выраженные и нестойкие иммунологические дефекты только в течение первых трех месяцев жизни.

Предупреждение невынашивания беременности направлено на нормализацию иммунологических взаимоотношений в системе мать - плод. Поскольку ведущим этиологическим фактором невынашивания являются инфекции, перенесенные в период беременности, предупреждение невынашивания включает профилактику и эффективное лечением таких инфекций. В качестве меры профилактики вирусных инфекций у беременных женщин (краснуха, цитомегаловирусная инфекция, герпес и др.) используется предварительная вакцинация соответствующими вакцинами до беременности в случаях выявления среди женщин детородного возраста серонегативных лиц, не имеющих соответствующих специфических антител.

При лечении бактериальных инфекций, выявленных в половой сфере женщины, рекомендуется использовать не только антибактериальные, но и антипростагландиновые препараты для подавления воспаления, сопряженного с повышением уровня провоспалительных цитокинов в эндометрии, что может препятствовать имплантации.

При лечении бесплодия введение женщинам препарата хорионического гонадотропина для гормональной коррекции влечет за собой и иммунокоррекцию, т.к. половые гормоны непосредственно контролируют основные иммунологические механизмы, ответственные за поддержание беременности.

При иммунотерапии невынашивания беременности применяется иммунизация женщины лейкоцитами мужа, содержащими его антигены, часть из которых наследует ребенок. Такая иммунизация вызывает в организме беременной женщины преимущественно гуморальный иммунный ответ с дифференцировкой Th2, что благоприятствует сохранению беременности.

К числу эффективных мер профилактики невынашивания относится диспансерное наблюдение за беременными, всестороннее, в том числе и иммунологическое их обследование для своевременного принятия медицинских мер профилактики, разъяснительная работа с беременными женщинами о вреде курения, алкоголя, наркотиков, неконтролируемого приема лекарственных препаратов, о рациональном питании и образе жизни в период беременности, о том, как сказываются на иммунной системе ребенка любые неблагоприятные пренатальные воздействия.

Поскольку широкое распространение получил метод экстракорпорального оплодотворения для решения проблем бесплодия, профилактика невынашивания в этом случае осложняется необходимостью предшествующей высокой гормональной нагрузки организма женщины. При этом особое значение приобретает предварительная специфическая иммунопрофилактика и иммунотерапия вирусных инфекций (герпеса, цитомегаловирусной инфекции) путем вакцинации обоих потенциальных родителей или путем введения им препаратов противовирусных иммуноглобулинов.

Среди различных подходов к решению задачи контрацепции разрабатываются методы антифертильной вакцинации женщин, преследующей цель вызвать в организме женщины иммунный ответ, препятствующий имплантации или способствующий отторжению нежелательного плода. С этой целью возможна вакцинация против антигенов: спермы, яйцеклетки, зиготы или гормонов беременности. Иммунизация женщины антигенами спермы приводит к накоплению в организме женщины антител, иммобилизирующих сперматозоиды. Перспективными кандидатами в антигены для создания контрацептивных вакцин считаются: релизинг-фактор лютеинизирующего гормона, так как антитела против него будут блокировать секрецию лютеинизирующего гормона, который необходим для созревания яйцеклеток из ооцитов. В случае вакцинации против прогестерона, блокирующие его антитела будут препятствовать поддержанию зрелых яйцеклеток в матке. В случае вакцинации против хорионического гонадотропина, блокирующие его антитела будут ингибировать секрецию прогестерона желтым телом, необходимую для поддержания зрелых яйцеклеток в матке. В любом из вариантов вакцинация должна вызвать иммунный ответ, подавляющий функции гормонов, необходимых для поддержания беременности.



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Поделка звезда – варианты и инструкции по изготовлению объемных и новогодних звезд (75 фото) Поделка звезда – варианты и инструкции по изготовлению объемных и новогодних звезд (75 фото) Квиллинг картины цветов, букетов: мастер-класс с фото и видео Квиллинг картины цветов, букетов: мастер-класс с фото и видео Как подстричь челку в домашних условиях? Как подстричь челку в домашних условиях?