Хромосомные патологии – риск развития. Хромосомные аномалии плода

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Аномалии хромосомного набора - это нарушения развития организма, вызванные измененной наследственной информацией. От возникающих отклонений природа пытается всеми силами избавиться самостоятельно, например, происходит быстрое самопроизвольное прерывание беременности - выкидыш. Однако в некоторых случаях младенцы с аномалией развития выживают. И чем позже начинает оказывать действие измененная наследственная информации, тем эта возможность выше. С некоторыми нарушениями, обусловленными хромосомной аномалией плода (например, сросшиеся пальцы рук или ног, меньшее или большее количество пальцев), люди могут вести нормальный образ жизни. Некоторые наследственные отклонения можно устранить, например, дисплазию тазобедренного сустава, врожденный вывих бедра, врожденные аномалии развития конечностей и т.п. В результате изменения наследственных структур возможны дефекты различных органов, например, врожденные пороки сердца, заячья губа или волчья пасть.

Причины возникновения

Эти нарушения возникают вследствие изменений (мутации) наследственной информации, содержащейся в хромосомах. Изменение наследственного материала вызывают мутагены. Чем старше человек, тем выше вероятность, что в его половых клетках уже произошло изменение наследственного материала. Измененную наследственную информацию своему потомству передает один из носителей этой информации (например, отец), тогда рождается ребенок с врожденными аномалиями. Однако чаще всего измененный наследственный материал получают из нескольких различных источников. Кроме того, на возникновение аномального дефекта оказывают влияние и другие факторы. Эти процессы наследования очень сложны и еще не вполне изучены. Поэтому нет возможности точно выявить причины нарушений, вызывающих аномалии хромосомного набора.

Нарушения, обусловленные аномалиями хромосом, являются наследственными, поэтому без медицинской помощи они останутся на всю жизнь. Нарушение могут наследовать и дети пациентов.

Некоторые нарушения очень опасны, другие - нет. Например, врожденные волчья пасть, косолапость, сросшиеся пальцы рук или ног, большее или меньшее количество пальцев на руках или ногах - обычно не препятствуют нормальному образу жизни. Однако при аномалии внутренних органов течение болезни неблагоприятно. Часто продолжительность жизни людей с такой врожденной аномалией значительно короче средней продолжительности жизни. Нередко хромосомные болезни сопровождаются нарушениями психики, слепотой, глухотой. Тяжелые уродства означают, что жизнь такого человека с самого детства будет очень сложной, возникнут трудности с социальной адаптацией и др.

Лечение

Лекарства здесь не помогут. Часто единственным выходом является операция (оперативным путем можно устранить многие врожденные дефекты). После операции иногда показана лечебная гимнастика. Семьям, имеющим детей со сложными патологиями, оказывается психотерапевтическая и социальная помощь.

Нарушения, обусловленные аномалией хромосомного набора, обычно устанавливаются сразу после рождения ребенка. В некоторых случаях (например, при врожденных пороках сердца) младенцу требуется срочная операция. В других случаях операции выполняются позже, учитывая состояние, дефект и возраст ребенка. Если нарушение не удается установить в роддоме, то врач это определит во время профилактических осмотров. Чем раньше выявлена врожденная аномалия, тем больше шансов на успешную корректировку и выздоровление пациента.

Можно ли избежать таких аномалий?

Эти врожденные пороки заранее предусмотреть невозможно. Они всегда проявляются в результате мутации. Риск мутаций увеличивается при старении человека, они чаще проявляются у членов одной семьи. При возникновении сомнений партнеры, желающие иметь детей, должны проконсультироваться с врачом-генетиком.

Не каждое уродство является наследственным. Оно может возникнуть под действием других факторов (лекарств).

Руководитель направления
„Онкогенетика“

Жусина
Юлия Геннадьевна

Окончила педиатрический факультет Воронежского государственного медицинского университета им. Н.Н. Бурденко в 2014 году.

2015 - интернатура по терапии на базе кафедры факультетской терапии ВГМУ им. Н.Н. Бурденко.

2015 - сертификационный курс по специальности «Гематология» на базе Гематологического научного центра г. Москвы.

2015-2016 – врач терапевт ВГКБСМП №1.

2016 - утверждена тема диссертации на соискание ученой степени кандидата медицинских наук «изучение клинического течения заболевания и прогноза у больных хронической обструктивной болезнью легких с анемическим синдромом». Соавтор более 10 печатных работ. Участник научно-практических конференций по генетике и онкологии.

2017 - курс повышения квалификации по теме: «интерпретация результатов генетических исследований у больных с наследственными заболеваниями».

С 2017 года ординатура по специальности «Генетика» на базе РМАНПО.

Руководитель направления
„Генетика“

Канивец
Илья Вячеславович

Канивец Илья Вячеславович, врач-генетик, кандидат медицинских наук, руководитель отдела генетики медико-генетического центра Геномед. Ассистент кафедры медицинской генетики Российской медицинской академии непрерывного профессионального образования.

Окончил лечебный факультет Московского государственного медико-стоматологического университета в 2009 году, а в 2011 – ординатуру по специальности «Генетика» на кафедре Медицинской генетики того же университета. В 2017 году защитил диссертацию на соискание ученой степени кандидата медицинских наук на тему: Молекулярная диагностика вариаций числа копий участков ДНК (CNVs) у детей с врожденными пороками развития, аномалиями фенотипа и/или умственной отсталостью при использовании SNP олигонуклеотидных микроматриц высокой плотности»

C 2011-2017 работал врачом-генетиком в Детской клинической больнице им. Н.Ф. Филатова, научно-консультативном отделе ФГБНУ «Медико-генетический научный центр». С 2014 года по настоящее время руководит отделом генетики МГЦ Геномед.

Основные направления деятельности: диагностика и ведение пациентов с наследственными заболеваниями и врожденными пороками развития, эпилепсией, медико-генетическое консультирование семей, в которых родился ребенок с наследственной патологией или пороками развития, пренатальная диагностика. В процессе консультации проводится анализ клинических данных и генеалогии для определения клинической гипотезы и необходимого объема генетического тестирования. По результатам обследования проводится интерпретация данных и разъяснение полученной информации консультирующимся.

Является одним из основателей проекта «Школа Генетики». Регулярно выступает с докладами на конференциях. Читает лекции для врачей генетиков, неврологов и акушеров-гинекологов, а также для родителей пациентов с наследственными заболеваниями. Является автором и соавтором более 20 статей и обзоров в российских и зарубежных журналах.

Область профессиональных интересов – внедрение современных полногеномных исследований в клиническую практику, интерпретация их результатов.

Время приема: СР, ПТ 16-19

Руководитель направления
„Неврология“

Шарков
Артем Алексеевич

Шарков Артём Алексеевич – врач-невролог, эпилептолог

В 2012 году обучался по международной программе “Oriental medicine” в университете Daegu Haanu в Южной Корее.

С 2012 года - участие в организации базы данных и алгоритма для интерпретации генетических тестов xGenCloud (http://www.xgencloud.com/, Руководитель проекта - Игорь Угаров)

В 2013 году окончил Педиатрический факультет Российского национального исследовательского медицинского университета имени Н.И. Пирогова.

C 2013 по 2015 год обучался в клинической ординатуре по неврологии в ФГБНУ «Научный центр неврологии».

С 2015 года работает неврологом, научным сотрудником в Научно- исследовательском клиническом институте педиатрии имени академика Ю.Е. Вельтищева ГБОУ ВПО РНИМУ им. Н.И. Пирогова. Также работает врачом- неврологом и врачом лаборатории видео-ЭЭГ мониторинга в клиниках «Центр эпилептологии и неврологии им. А.А.Казаряна» и «Эпилепси-центр».

В 2015 году прошел обучение в Италии на школе «2nd International Residential Course on Drug Resistant Epilepsies, ILAE, 2015».

В 2015 году повышение квалификации - «Клиническая и молекулярная генетика для практикующих врачей», РДКБ, РОСНАНО.

В 2016 году повышение квалификации - «Основы молекулярной генетики» под руководством биоинформатика, к.б.н. Коновалова Ф.А.

С 2016 года - руководитель неврологического направления лаборатории "Геномед".

В 2016 году прошел обучение в Италии на школе «San Servolo international advanced course: Brain Exploration and Epilepsy Surger, ILAE, 2016».

В 2016 году повышение квалификации - "Инновационные генетические технологии для врачей", "Институт лабораторной медицины".

В 2017 году – школа «NGS в медицинской генетике 2017», МГНЦ

В настоящее время проводит научные исследования в области генетики эпилепсии под руководством профессора, д.м.н. Белоусовой Е.Д. и профессора, д.м.н. Дадали Е.Л.

Утверждена тема диссертации на соискание ученой степени кандидата медицинских наук "Клинико-генетические характеристики моногенных вариантов ранних эпилептических энцефалопатий".

Основные направления деятельности – диагностика и лечение эпилепсии у детей и взрослых. Узкая специализация – хирургическое лечение эпилепсии, генетика эпилепсий. Нейрогенетика.

Научные публикации

Шарков А., Шаркова И., Головтеев А., Угаров И. «Оптимизация дифференциальной диагностики и интерпретации результатов генетического тестирования экспертной системой XGenCloud при некоторых формах эпилепсий». Медицинская генетика, № 4, 2015, с. 41.
*
Шарков А.А., Воробьев А.Н., Троицкий А.А., Савкина И.С., Дорофеева М.Ю., Меликян А.Г., Головтеев А.Л. "Хирургия эпилепсии при многоочаговом поражении головного мозга у детей с туберозным склерозом." Тезисы XIV Российского Конгресса «ИННОВАЦИОННЫЕ ТЕХНОЛОГИИ В ПЕДИАТРИИ И ДЕТСКОЙ ХИРУРГИИ». Российский Вестник Перинатологии и Педиатрии, 4, 2015. - с.226-227.
*
Дадали Е.Л., Белоусова Е.Д., Шарков А.А. "Молекулярно-генетические подходы к диагностике моногенных идиопатических и симптоматических эпилепсий". Тезис XIV Российского Конгресса «ИННОВАЦИОННЫЕ ТЕХНОЛОГИИ В ПЕДИАТРИИ И ДЕТСКОЙ ХИРУРГИИ». Российский Вестник Перинатологии и Педиатрии, 4, 2015. - с.221.
*
Шарков А.А., Дадали Е.Л., Шаркова И.В. «Редкий вариант ранней эпилептической энцефалопатии 2 типа, обусловленной мутациями в гене CDKL5 у больного мужского пола». Конференция "Эпилептология в системе нейронаук". Сборник материалов конференции: / Под редакцией: проф. Незнанова Н.Г., проф. Михайлова В.А. СПб.: 2015. – с. 210-212.
*
Дадали Е.Л., Шарков А.А., Канивец И.В., Гундорова П., Фоминых В.В., Шаркова И,В,. Троицкий А.А., Головтеев А.Л., Поляков А.В. Новый аллельный вариант миоклонус-эпилепсии 3 типа, обусловленный мутациями в гене KCTD7// Медицинская генетика.-2015.- т.14.-№9.- с.44-47
*
Дадали Е.Л., Шаркова И.В., Шарков А.А., Акимова И.А. «Клинико-генетические особенности и современные способы диагностики наследственных эпилепсий». Сборник материалов «Молекулярно-биологические технологии в медицинской практике» / Под ред. чл.-корр. РАЕН А.Б. Масленникова.- Вып. 24.- Новосибирск: Академиздат, 2016.- 262: с. 52-63
*
Белоусова Е.Д., Дорофеева М.Ю., Шарков А.А. Эпилепсия при туберозном склерозе. В "Болезни мозга, медицинские и социальные аспекты" под редакцией Гусева Е.И., Гехт А.Б., Москва; 2016; стр.391-399
*
Дадали Е.Л., Шарков А.А., Шаркова И.В., Канивец И.В., Коновалов Ф.А., Акимова И.А. Наследственные заболевания и синдромы, сопровождающиеся фебрильными судорогами: клинико-генетические характеристики и способы диагностики. //Русский Журнал Детской Неврологии.- Т. 11.- №2, с. 33- 41. doi: 10.17650/ 2073-8803- 2016-11- 2-33- 41
*
Шарков А.А., Коновалов Ф.А., Шаркова И.В., Белоусова Е.Д., Дадали Е.Л. Молекулярно-генетические подходы к диагностике эпилептических энцефалопатий. Сборник тезисов «VI БАЛТИЙСКИЙ КОНГРЕСС ПО ДЕТСКОЙ НЕВРОЛОГИИ» / Под редакцией профессора Гузевой В.И. Санкт- Петербург, 2016, с. 391
*
Гемисферотомии при фармакорезистентной эпилепсии у детей с билатеральным поражением головного мозга Зубкова Н.С., Алтунина Г.Е., Землянский М.Ю., Троицкий А.А., Шарков А.А., Головтеев А.Л. Сборник тезисов «VI БАЛТИЙСКИЙ КОНГРЕСС ПО ДЕТСКОЙ НЕВРОЛОГИИ» / Под редакцией профессора Гузевой В.И. Санкт-Петербург, 2016, с. 157.
*
*
Статья: Генетика и дифференцированное лечение ранних эпилептических энцефалопатий. А.А. Шарков*, И.В. Шаркова, Е.Д. Белоусова, Е.Л. Дадали. Журнал неврологии и психиатрии, 9, 2016; Вып. 2doi: 10.17116/jnevro 20161169267-73
*
Головтеев А.Л., Шарков А.А., Троицкий А.А., Алтунина Г.Е., Землянский М.Ю., Копачев Д.Н., Дорофеева М.Ю. "Хирургическое лечение эпилепсии при туберозном склерозе" под редакцией Дорофеевой М.Ю., Москва; 2017; стр.274
*
Новые международные классификации эпилепсий и эпилептических приступов Международной Лиги по борьбе с эпилепсией. Журнал неврологии и психиатрии им. C.C. Корсакова. 2017. Т. 117. № 7. С. 99-106

Руководитель отдела
"Генетика предрасположенностей",
биолог, генетик-консультант

Дудурич
Василиса Валерьевна

– руководитель отдела "Генетика предрасположенностей", биолог, генетик-консультант

В 2010 г – PR-специалист, Дальневосточный институт международных отношений

В 2011 г. – Биолог, Дальневосточный Федеральный Университет

В 2012 г. – ФГБУН НИИ ФХМ ФМБФ России «Генодиагностика в современной медицине»

В 2012 г. – Учеба « Внедрение генетического тестирования в клинику широкого профиля»

В 2012 г. – Профессиональна подготовка «Пренатальная диагностика и генетический паспорт – основа профилактической медицины в век нанотехнологий» НИИ АГ им.Д.И.Отта СЗО РАМН

В 2013 г. – Профессиональна подготовка «Генетика в клинической гемостазиологии и гемореологии» НЦ ССХ им.Бакулева

В 2015 г. – Профессиональна подготовка в рамках VII съезда Российского общества Медицинских генетиков

В 2016 г. – Школа анализа данных «NGS в медицинской практике» ФГБНУ «МГНЦ»

В 2016 г. – Стажировка «Генетическое консультирование» ФГБНУ «МГНЦ»

В 2016 г. – Принимала участие в Международном Конгрессе по Генетике Человека г.Киото, Япония

С 2013-2016 гг – Руководитель медико-генетического центра в г.Хабаровске

С 2015-2016 гг – преподаватель на кафедре "Биологии" в Дальневосточном Государственном Медицинском Университете

С 2016-2018 гг – Секретарь Хабаровского отделения Российского общества медицинских генетиков

В 2018г. – Принимала участие в семинаре "Репродуктивный потенциал России: версии и контрверсии" Сочи, Россия

Организатор школы-семинара «Эпоха генетики и биоинформатики: междисциплинарный подход в науке и практике» - 2013, 2014, 2015, 2016 гг.

Стаж работы генетиком консультантом – 7 лет

Учредитель Благотворительного фонда им.Царицы Александры в помощь детям с генетической патологией alixfond.ru

Сфера профессиональных интересов: миробиом, мультифакториальная патологая, фармакогенетика, нутригенетика, репродуктивная генетика, эпигенетика.

Руководитель направления
"Пренатальная диагностика"

Киевская
Юлия Кирилловна

В 2011 году Окончила Московский Государственный Медико-Стоматологический Университет им. А.И. Евдокимова по специальности «Лечебное дело» Обучалась в ординатуре на кафедре Медицинской генетики того же университета по специальности «Генетика»

В 2015 году окончила интернатуру по специальности Акушерство и Гинекология в Медицинском институте усовершенствования врачей ФГБОУ ВПО «МГУПП»

С 2013 года ведет консультативный прием в ГБУЗ «Центр Планирования Семьи и Репродукции» ДЗМ

С 2017 года является руководителем направления «Пренатальная Диагностика» лаборатории Геномед

Регулярно выступает с докладами на конференциях и семинарах. Читает лекции для врачей различных специальной в области репродуции и пренатальной диагностики

Проводит медико-генетическое консультирование беременных по вопросам пренатальной диагностики с целью предупреждения рождения детей с врождёнными пороками развития, а так же семей с предположительно наследственной или врожденной патологией. Проводит интерпретацию полученных результатов ДНК-диагностики.

СПЕЦИАЛИСТЫ

Латыпов
Артур Шамилевич

Латыпов Артур Шамилевич – врач генетик высшей квалификационной категории.

После окончания в 1976 году лечебного факультета Казанского государственного медицинского института в течение многих работал сначала врачом кабинета медицинской генетики, затем заведующим медико-генетическим центром Республиканской больницы Татарстана, главным специалистом министерства здравоохранения Республики Татарстан, преподавателем кафедр Казанского медуниверситета.

Автор более 20 научных работ по проблемам репродукционной и биохимической генетики, участник многих отечественных и международных съездов и конференций по проблемам медицинской генетики. Внедрил в практическую работу центра методы массового скрининга беременных и новорожденных на наследственные заболевания, провел тысячи инвазивных процедур при подозрении на наследственные заболевания плода на разных сроках беременности.

С 2012 года работает на кафедре медицинской генетики с курсом пренатальной диагностики Российской академии последипломного образования.

Область научных интересов – метаболические болезни у детей, дородовая диагностика.

Время приема: СР 12-15, СБ 10-14

Прием врачей осуществляется по предварительной записи.

Врач-генетик

Габелко
Денис Игоревич

В 2009 году закончил лечебный факультет КГМУ им. С. В. Курашова (специальность «Лечебное дело»).

Интернатура в Санкт-Петербургской медицинской академии последипломного образования Федерального агентства по здравоохранению и социальному развитию (специальность «Генетика»).

Интернатура по терапии. Первичная переподготовка по специальности «Ультразвуковая диагностика». С 2016 года является сотрудником кафедры кафедры фундаментальных основ клинической медицины института фундаментальной медицины и биологии.

Сфера профессиональных интересов: пренатальная диагностика, применение современных скрининговых и диагностических методов для выявления генетической патологии плода. Определение риска повторного возникновения наследственных болезней в семье.

Участник научно-практических конференций по генетике и акушерству и гинекологии.

Стаж работы 5 лет.

Консультация по предварительной записи

Прием врачей осуществляется по предварительной записи.

Врач-генетик

Гришина
Кристина Александровна

Окончила в 2015 году Московский Государственный Медико-Стоматологический Университет по специальности «Лечебное дело». В том же году поступила в ординатуру по специальности 30.08.30 «Генетика» в ФГБНУ «Медико-генетический научный центр».
Принята на работу в лабораторию молекулярной генетики сложно наследуемых заболеваний (заведующий – д.б.н. Карпухин А.В.) в марте 2015 года на должность лаборанта-исследователя. С сентября 2015 года переведена на должность научного сотрудника. Является автором и соавтором более 10 статей и тезисов по клинической генетике, онкогенетике и молекулярной онкологии в российских и зарубежных журналах. Постоянный участник конференций по медицинской генетике.

Область научно-практических интересов: медико-генетическое консультирование больных с наследственной синдромальной и мультифакториальной патологией.


Консультация врача-генетика позволяет ответить на вопросы:

являются ли симптомы у ребенка признаками наследственного заболевания какое исследование необходимо для выявления причины определение точного прогноза рекомендации по проведению и оценка результатов пренатальной диагностики все, что нужно знать при планировании семьи консультация при планировании ЭКО выездные и онлайн консультации

Врач-генетик

Горгишели
Кетеван Важаевна

Является выпускницей медико-биологического факультета Российского Национального Исследовательского Медицинского Университета имени Н.И. Пирогова 2015 года, защитила дипломную работу на тему «Клинико-морфологическая корреляция витальных показателей состояния организма и морфофункциональных характеристик мононуклеаров крови при тяжелых отравлениях». Окончила клиническую ординатуру по специальности «Генетика» на кафедре молекулярной и клеточной генетики вышеупомянутого университета.

ринимала участие в научно-практической школе "Инновационные генетические технологии для врачей: применение в клинической практике", конференции Европейского общества генетики человека (ESHG) и других конференциях, посвященных генетике человека.

Проводит медико-генетическое консультирование семей с предположительно наследственной или врожденной патологией, включая моногенные заболевания и хромосомные аномалии, определяет показания к проведению лабораторных генетических исследований, проводит интерпретацию полученных результатов ДНК-диагностики. Консультирует беременных по вопросам пренатальной диагностики с целью предупреждения рождения детей с врождёнными пороками развития.

Врач-генетик, врач акушер-гинеколог, кандидат медицинских наук

Кудрявцева
Елена Владимировна

Врач-генетик, врач акушер-гинеколог, кандидат медицинских наук.

Специалист в области репродуктивного консультирования и наследственной патологии.

Окончила Уральскую государственную медицинскую академию в 2005 году.

Ординатура по специальности «Акушерство и гинекология»

Интернатура по специальности «Генетика»

Профессиональная переподготовка по специальности «Ультразвуковая диагностика»

Направления деятельности:

  • Бесплодие и невынашивание беременности
  • Василиса Юрьевна

    Является выпускницей Нижегородской государственной медицинской академии, лечебного факультета (специальность «Лечебное дело»). Окончила клиническую ординатуру ФБГНУ «МГНЦ» по специальности «Генетика». В 2014 году проходила стажировку в клинике материнства и детства (IRCCS materno infantile Burlo Garofolo, Trieste, Italy).

    С 2016 года работает на должности врача-консультанта в ООО «Геномед».

    Регулярно участвует в научно-практических конференциях по генетике.

    Основные направления деятельности: Консультирование по вопросам клинической и лабораторной диагностики генетических заболеваний и интерпретация результатов. Ведение пациентов и их семей с предположительно наследственной патологией. Консультирование при планировании беременности, а также при наступившей беременности по вопросам пренатальной диагностики с целью предупреждения рождения детей с врожденной патологией.

    В период с 2013 г. по 2014 г. работала в должности младшего научного сотрудника лаборатории молекулярной онкологии Ростовского научно-исследовательского онкологического института.

    В 2013 г. - повышение квалификации «Актуальные вопросы клинической генетики», ГБОУ ВПО Рост ГМУ Минздрава России.

    В 2014 г. - повышение квалификации «Применение метода ПЦР в реальном времени для генодиагностики соматических мутаций», ФБУН «Центральный научно-исследовательский институт эпидемиологии Роспотребнадзора».

    С 2014 г. – врач-генетик лаборатории медицинской генетики Ростовского государственного медицинского университета.

    В 2015 г. успешно подтвердила квалификацию «Medical Laboratory Scientist». Является действующим членом «Australian Institute of Medical Scientist».

    В 2017 г. - повышение квалификации «Интерпретация результатов Генетических исследований у больных с наследственными заболеваниями», НОЧУДПО «Учебный центр по непрерывному медицинскому и фармацевтическому образованию»; «Актуальные вопросы клинической лабораторной диагностики и лабораторной генетики», ФБОУ ВО РостГМУ Минздрава России; повышение квалификации «BRCA Liverpool Genetic Counselling Course», Liverpool University.

    Регулярно участвует в научных конференциях, является автором и соавтором более 20 научных публикаций в отечественных и зарубежных изданиях.

    Основное направление деятельности: клинико-лабораторная интерпретация результатов ДНК-диагностики, хромосомного микроматричного анализа, NGS.

    Сфера интересов: применение в клинической практике новейших полногеномных методов диагностики, онкогенетика.

Примерно 1 из 150 детей рождается с хромосомной аномалией . Эти нарушения вызваны ошибками в количестве или структуре хромосом. Многие дети с хромосомными проблемами имеют психические и/или физические врожденные дефекты. Некоторые хромосомные проблемы в конечном итоге приводят к выкидышу или мертворождению.

Хромосомы – это нитевидные структуры, находящиеся в клетках нашего организма и содержащие в себе набор генов. У людей насчитывается около 20 – 25 тыс. генов, которые определяют такие признаки, как цвет глаз и волос, а также отвечают за рост и развитие каждой части тела. У каждого человека в норме 46 хромосом, собранных в 23 хромосомные пары, в которых одна хромосома – унаследованная от матери, а вторая – от отца.

Причины хромосомных аномалий

Хромосомные патологии обычно являются результатом ошибки, которая происходит во время созревания сперматозоида или яйцеклетки. Почему происходят эти ошибки, пока не известно.

Яйцеклетки и сперматозоиды в норме содержат по 23 хромосомы. Когда они соединяются, они образуют оплодотворенную яйцеклетку с 46 хромосомами. Но иногда во время (или до) оплодотворения что-то идет не так. Так, например, яйцеклетка или сперматозоид могут неправильно развиться, в результате чего в них могут быть лишние хромосомы, или, наоборот, может не хватать хромосом.

При этом клетки с неправильным числом хромосом присоединяются к нормальной яйцеклетке или сперматозоиду, вследствие чего полученный эмбрион имеет хромосомные отклонения.

Наиболее распространенный тип хромосомной аномалии называется трисомией. Это означает, что у человека вместо двух копий конкретной хромосомы имеется три копии. Например, имеют три копии 21-й хромосомы.

В большинстве случаев эмбрион с неправильным числом хромосом не выживает. В таких случаях у женщины происходит выкидыш, как правило, на ранних сроках. Это часто происходит в самом начале беременности, прежде чем женщина может понять, что она беременна. Более чем 50% выкидышей в первом триместре вызваны именно хромосомными патологиями у эмбриона.

Другие ошибки могут возникнуть перед оплодотворением. Они могут привести к изменению структуры одной или нескольких хромосом. У людей со структурными хромосомными отклонениями, как правило, нормальное число хромосом. Тем не менее, небольшие кусочки хромосомы (или вся хромосома) могут быть удалены, скопированы, перевернуты, неуместны или могут обмениваться с частью другой хромосомы. Эти структурные перестройки могут не оказывать никакого влияния на человека, если у него есть все хромосомы, но они просто переставлены. В других случаях такие перестановки могут привести к потере беременности или врожденным дефектам.

Ошибки в делении клеток могут произойти вскоре после оплодотворения. Это может привести к мозаицизму – состоянию, при котором человек имеет клетки с различными генетическими наборами. Например, людям с одной из форм мозаицизма – с синдромом Тернера – не хватает Х-хромосомы в некоторых, но не во всех, клетках.

Диагностика хромосомных аномалий

Хромосомные отклонения можно диагностировать еще до рождения ребенка путем пренатальных исследований, таких как, например, амниоцентез или биопсия хориона, или уже после рождения с помощью анализа крови.

Клетки, полученные в результате этих анализов, выращиваются в лаборатории, а затем их хромосомы исследуются под микроскопом. Лаборатория делает изображение (кариотип) всех хромосом человека, расположенных в порядке от большего к меньшему. Кариотип показывает количество, размер и форму хромосом и помогает врачам выявить любые отклонения.

Первый пренатальный скрининг заключается во взятии на анализ материнской крови в первом триместре беременности (между 10 и 13 неделями беременности), а также в специальном ультразвуковом исследовании задней части шеи ребенка (так называемого воротникового пространства).

Второй пренатальный скрининг проводится во втором триместре беременности и заключается в анализе материнской крови на сроке между 16 и 18 неделями. Этот скрининг позволяет выявить беременности, которые находятся на более высоких рисках по наличию генетических нарушений.

Тем не менее, скрининг-тесты не могут точно диагностировать синдром Дауна или другие. Врачи предлагают женщинам, у которых выявлены аномальные результаты скрининг-тестов, пройти дополнительные исследования – биопсию хориона и амниоцентез, чтобы окончательно диагностировать или исключить эти нарушения.

Самые распространенные хромосомные аномалии

Первые 22 пары хромосом называются аутосомами или соматическими (неполовыми) хромосомами. Наиболее распространенные нарушения этих хромосом включают в себя:

1. Синдром Дауна (трисомия 21 хромосомы) – одно из наиболее распространенных хромосомных отклонений, диагностируемое примерно у 1 из 800 младенцев. Люди с синдромом Дауна имеют различную степень умственного развития, характерные черты лица и, зачастую, врожденные аномалии в развитии сердца и другие проблемы.

Современные перспективы развития детей с синдромом Дауна намного ярче, чем были раньше. Большинство из них имеют ограниченные интеллектуальные возможности в легкой и умеренной форме. При условии раннего вмешательства и специального образования, многие из таких детей учатся читать и писать и с детства участвуют в различных мероприятиях.

Риск синдрома Дауна и других трисомий увеличивается с возрастом матери. Риск рождения ребенка с синдромом Дауна составляет примерно:

  • 1 из 1300 – если возраст матери 25 лет;
  • 1 из 1000 – если возраст матери 30 лет;
  • 1 из 400 – если возраст матери 35 лет;
  • 1 из 100 – если возраст матери 40 лет;
  • 1 из 35 – если возраст матери 45 лет.

2. Трисомии 13 и 18 хромосом – эти трисомии обычно более серьезные, чем синдром Дауна, но, к счастью, довольно редкие. Примерно 1 из 16000 младенцев рождается с трисомией 13 (синдром Патау), и 1 на 5000 младенцев – с трисомией 18 (синдром Эдвардса). Дети с трисомиями 13 и 18, как правило, страдают тяжелыми отклонениями в умственном развитии и имеют множество врожденных физических дефектов. Большинство таких детей умирает в возрасте до одного года.

Последняя, 23-я пара хромосом – это половые хромосомы, называемые хромосомами X и хромосомами Y. Как правило, женщины имеют две Х-хромосомы, а у мужчины одна Х-хромосома и одна Y-хромосома. Аномалии половых хромосом могут вызвать бесплодие, нарушения роста и проблемы с обучением и поведением.

Наиболее распространенные аномалии половых хромосом включают в себя:

1. Синдром Тернера – это нарушение затрагивает приблизительно 1 из 2500 плодов женского пола. У девочки с синдромом Тернера есть одна нормальная Х-хромосома и полностью или частично отсутствует вторая Х-хромосома. Как правило, такие девочки бесплодны и не подвергаются изменениям нормального полового созревания, если они не будут принимать синтетические половые гормоны.

Затронутые синдромом Тернера девушки очень невысокие, хотя лечение гормоном роста может помочь увеличению роста. Кроме того, у них присутствует целый комплекс проблем со здоровьем, особенно с сердцем и почками. Большинство девочек с синдромом Тернера обладают нормальным интеллектом, хотя и испытывают некоторые трудности в обучении, особенно в математике и пространственном мышлении.

2. Трисомия по Х-хромосоме – примерно у 1 из 1000 женщин имеется дополнительная Х-хромосома. Такие женщины отличаются очень высоким ростом. Они, как правило, не имеют физических врожденных дефектов, у них нормальное половое созревание и они способны к деторождению. У таких женщин нормальный интеллект, но могут быть и серьезные проблемы с учебой.

Поскольку такие девушки здоровы и имют нормальный внешний вид, их родители часто не знают, что у их дочери есть . Некоторые родители узнают, что у их ребенка подобное отклонение, если матери во время вынашивания беременности был проведен один из инвазивных методов пренатальной диагностики (амниоцентез или хориоцентез).

3. Синдром Клайнфельтера – это нарушение затрагивает приблизительно 1 из 500 – 1000 мальчиков. У мальчиков с синдромом Клайнфельтера есть две (а иногда и больше) Х-хромосомы вместе с одной нормальной Y-хромосомой. Такие мальчики обычно имеют нормальный интеллект, хотя у многих наблюдаются проблемы с учебой. Когда такие мальчики взрослеют, у них отмечается пониженная секреция тестостерона и они оказываются бесплодными.

4. Дисомия по Y-хромосоме (XYY) – примерно 1 из 1000 мужчин рождается с одной или несколькими дополнительными Y-хромосомами. У такихх мужчин нормальное половое созревание и они не бесплодны. Большинство из них имеют нормальный интеллект, хотя могут быть некоторые трудности в обучении, поведении и проблемы с речью и усвоением языков. Как и в случае с трисомией по Х-хромосоме у женщин, многие мужчины и их родители не знают, что у них есть такая аномалия, пока не будет проведена пренатальная диагностика.

Менее распространенные хромосомные аномалии

Новые методы анализа хромосом позволяют определить крошечные хромосомные патологии, которые не могут быть видны даже под мощным микроскопом. В результате, всё больше родителей узнают, что у их ребенка есть генетическая аномалия.

Некоторые из таких необычных и редких аномалий включают в себя:

  • Делеция – отсутствие небольшого участка хромосомы;
  • Микроделеция — отсутствие очень небольшого количества хромосом, возможно, не хватает только одного гена;
  • Транслокация – часть одной хромосомы присоединяется к другой хромосоме;
  • Инверсия – часть хромосомы пропущена, а порядок генов изменен на обратный;
  • Дублирование (дупликация) – часть хромосомы дублируется, что приводит к образованию дополнительного генетического материала;
  • Кольцевая хромосома – когда на обоих концах хромосомы происходит удаление генетического материала, и новые концы объединяются и образуют кольцо.

Некоторые хромосомные патологии настолько редки, что науке известен только один или несколько случаев. Некоторые аномалии (например, некоторые транслокации и инверсии) могут никак не повлиять на здоровье человека, если отсутствует не генетический материал.

Некоторые необычные расстройства могут быть вызваны небольшими хромосомными делециями. Примерами являются:

  • Синдром кошачьего крика (делеция по 5 хромосоме) – больные дети в младенчестве отличаются криком на высоких тонах, как будто кричит кошка. У них есть существенные проблемы в физическом и интеллектуальном развитии. С таким заболеванием рождается примерно 1 из 20 – 50 тыс. младенцев;
  • Синдром Прадера-Вилл и (делеция по 15 хромосоме) – больные дети имеют отклонения в умственном развитии и в обучении, низкий рост и проблемы с поведением. У большинства таких детей развивается экстремальное ожирение. С таким заболеванием рождается примерно 1 из 10 – 25 тыс. младенцев;
  • Синдром Ди Джорджи (делеция по 22 хромосоме или делеция 22q11) – с делецией в определенной части 22 хромосомы рождается примерно 1 из 4000 младенцев. Данная делеция вызывает различные проблемы, которые могут включать в себя пороки сердца, расщелину губы/неба (волчья пасть и заячья губа), нарушения иммунной системы, аномальные черты лица и проблемы в обучении;
  • Синдром Вольфа-Хиршхорна (делеция по 4 хромосоме) – это расстройство характеризуется отклонениями в умственном развитии, пороками сердца, плохим мышечным тонусом, судорогами и другими проблемами. Это заболевание затрагивает примерно 1 из 50000 младенцев.

За исключением людей с синдромом Ди Джорджи, люди с вышеперечисленными синдромами бесплодны. Что касается людей с синдромом Ди Джорджи, то эта патология передается по наследству на 50% с каждой беременностью.

Новые методы анализа хромосом иногда могут точно определить, где отсутствует генетический материал, или где присутствует лишний ген. Если врач точно знает, где находится виновник хромосомной аномалии , он может оценить всю степень его влияния на ребенка и дать примерный прогноз развития этого ребенка в будущем. Часто это помогает родителям принять решение о сохранении беременности и заранее подготовиться к рождению немножко не такого, как все, малыша.

Беременность – долгожданное состояние женщины. Однако это ещё и период переживаний. Ведь нормальное течение беременности – это далеко не гарантия того, что малыш родиться без патологий. На раннем сроке обязательно проводятся диагностические мероприятия, которые помогают исключить хромосомные патологии.

Аномалии плода хромосомного типа представляют собой появление дополнительной (лишней) хромосомы или же нарушение в структуре одной из хромосом. Происходит это ещё во время внутриутробного развития.

Так, каждый знает про синдром Дауна. Это заболевание, которое развивается внутриутробно. Связано оно с появлением лишней хромосомы непосредственно в 21 паре. Благодаря диагностике, а также внешним проявлениям течения беременности, можно выявить такую патологию ещё на ранних этапах развития плода.

Причины хромосомных аномалий

Хромосомные пороки могут развиться по разным причинам. Часто это проблемы со здоровьем у матери:

  • инфекции;
  • проблемы с эндокринной системы;
  • заболевания любых внутренних органов;
  • токсикоз при беременности;
  • прежние аборты;
  • угроза выкидыша.

Большую роль играют экология, которая постоянно действует на организм женщины, а также особенности окружающей среды:


Немаловажен наследственный фактор. Мутации генов, аберрации хромосом – частые причины развития аномалий.

Уже при планировании беременности нужно задуматься о сбалансированном питании:

  1. Все основные ингредиенты должны обязательно в достаточном количестве присутствовать в меню (витамины, жиры, минералы, углеводы и белки).
  2. Нужно позаботиться о наличии в меню продуктов с микронутриентами (полиненасыщенные жирные кислоты, важные для организма микроэлементы). Так, дефицит такого элемента, как йод в организме может привести к нарушению развития мозга будущего ребёнка.

Факторы риска

Существует множество факторов риска для развития хромосомных аномалий. Со стороны матери это такие проблемы, как:

Есть риски и со стороны плода:

  • Задержка развития.
  • Многоплодная беременность.
  • Аномалии в предлежании.

Лекарства, беременность и хромосомные патологии

На плод влияют многие лекарственные препараты, которые принимает женщина во время беременности:

  • аминогликозиды токсически влияют на развитие уха и почек;
  • алоэ способствует усилению перистальтике кишечника;
  • антигистаминные средства могут вызвать тремор и заметно снижают давление;
  • андрогены – причина развития пороков плода;
  • антикоагулянты могут вызвать проблемы с костеобразованием, а также энцефалопатию;
  • атропин – причина мозговой дисфункции;
  • белладонна вызывает у плода тахикардию;
  • средства для снижения давления значительно снижают кровоток плаценте;
  • диазепам может навредить внешности будущего ребёнка;
  • кортикостероиды угнетают функциональное предназначение надпочечников, ведут к энцефалопатии;
  • кофеин поражает печень плода;
  • литий развивает пороки сердца;
  • опиаты влияют на мозговую деятельность;
  • противосудорожные средства заметно задерживают внутриутробное развитие малыша;
  • тетрациклины приводят к аномалиям скелета.

Признаки

Процесс развития аномалий во внутриутробном состоянии сегодня изучен недостаточно. Именно поэтому признаки аномалий считаются условными. Среди них:

Все эти признаки могут быть и нормой развития плода, при условии подобной особенности организма ребёнка или же матери. Максимально точно убедиться в том, что присутствуют хромосомные аномалии, помогут анализы кров, инвазивные методики и УЗИ.

Диагностика

Главная задача диагностических мероприятий, которые назначаются во время беременности – выявление пороков развития плода. Сегодня есть огромное количество методов, позволяющих точно поставить диагноз или исключить наличие аномалий.

Неинвазивные методы:

  • УЗИ назначается за всю беременность 3 раза (до 12 недель, на 20-22 неделе и 30-32 неделе).
  • Определение биохимических маркеров в сыворотке крови. ХГЧ, протеин А – отклонения от нормы могут свидетельствовать о внематочной беременности или развитии хромосомных нарушений. Альфа-фетопротеин – пониженный уровень говорит о наличии риск развития синдрома Дауна, а повышенный уровень расскажет о возможном пороке ЦНС. Эстриол – в норме должен постепенно нарастать с увеличением срока беременности.

Инвазивные методики:

Уже после рождения ребёнка для определения аномалий могут быть использованы любые методики из арсенала современной медицины:

  • лучевые методы (КТ, КТГ, Рентген, УЗИ);
  • эндоскопические;
  • исследования биологических материалов;
  • пробы функциональные.

Возможные патологии

Развитие многих аномалий наблюдается в конкретные периоды беременности:

  • 3 недели – эктопия сердца, отсутствие конечностей, а также сращение стоп;
  • 4 недели – отсутствие стоп, гемивертебра;
  • 5 недель – расщепление костей лица, а также такие страшные проблемы, как отсутствие кистей, стоп;
  • 6 недель – полное отсутствие нижней челюсти, а также порок сердца, хрусталиковая катаракта;
  • 7 недель – абсолютное отсутствие пальцев, развитие круглой головы, неисправимое расщепление нёба сверху, а также эпикантус;
  • 8 недель – отсутствие носовой кости, укорочение пальцев.

Последствия развития проблем хромосомного характера – самые разнообразные. Это могут быть не только внешние уродства, но и поражения, нарушения работы ЦНС. Возникшие патологии зависят от того, какая именно аномалия хромосом произошла:

  1. Если нарушено количественная характеристика хромосом, может возникнуть синдром Дауна (в 21 паре – одна лишняя хромосома), синдром Патау (тяжелейшая патология с многочисленными пороками), синдром Эдвардса (часто появляется у детей пожилых мам).
  2. Нарушение количества половых хромосом. Тогда вероятно развитие синдрома Шерешевского-Тёрнера (развитие половых желёз по неверному типу), полисомии характеризуются разными проблемами, синдрома Клайнфельтера (нарушения именно у мальчиков по X-хромосоме).
  3. Полиплоидия обычно заканчивается смертью ещё в утробе матери.

Генные мутации до конца ещё не изучены учёными. Причины их развития до сих пор исследуются специалистами. Но уже у 5% всех беременных в мире выявляют генетические аномалии плода.

Для лучшего понимания причин хромосомных аномалий, с которыми может столкнуться в своей практике специалист по лечению бесплодия, дадим краткую характеристику митоза и мейоза. В ходе митоза в соматических клетках, содержащих диплоидный набор хромосом (2n), происходит удвоение ДНК, что дает тетраплоидный набор (4n). После репликации ДНК митоз проходит через следующие стадии: профаза, прометафаза, метафаза, анафаза и телофаза. Каждая из дочерних клеток является точной копией родительской.

Половые клетки содержат гаплоидный набор хромосом (1n), который должен сохраняться до оплодотворения, в противном случае возникнут хромосомные аномалии.

Необходимо помнить, что у мужских и женских половых клеток мейоз протекает по-разному. Ооциты I порядка у плода вступают в мейоз и останавливаются в профазе I в стадии диплотены в середине II триместра беременности; мейоз возобновляется лишь в доминантном фолликуле непосредственно перед овуляцией. Под влиянием ЛГ 1-е деление свершается, и образующийся ооцит II порядка вступает во 2-е деление, которое завершается уже после оплодотворения. Помимо ооцита II порядка в 1-м делении образуется первое полярное тельце. Во 2-м делении из ооцита II порядка образуются яйцеклетка и второе полярное тельце. У мужчин сперматозоиды образуются только после наступления полового созревания, и каждый сперматоцит I порядка дает в 1-м делении два сперматоцита II порядка. Во 2-м делении каждый из них дает две сперматиды, которые позднее превращаются в зрелые сперматозоиды.

Нарушения митоза и мейоза

Нарушения мейоза приводят к анеуплоидии. В случае нерасхождения хромосом одна из дочерних клеток получает 22 хромосомы, что после оплодотворения дает эмбрион с моносомией. Другая дочерняя клетка получает 24 хромосомы, что дает после оплодотворения трисомию. Если одна из хромосом в анафазе не отделяется от веретена деления (запаздывание хромосом) и не попадает в дочернюю клетку, оплодотворение такой клетки также приводит к моносомии. Вероятность нерасхождения хромосом и, следовательно, возникновения трисомий тем выше, чем больше возраст матери. Хотя это зависит от конкретной хромосомы, в целом причиной большинства трисомий, с которыми сталкиваются врачи, являются нарушения 1-го деления мейоза у женщин. Если нерасхождение хромосом произошло в митозе, в организме могут возникнуть два различных клеточных клона (мозаицизм). Это может наблюдаться при дисгенезии гонад - нерасхождение хромосом в зиготе с карио-типом 46,XY может дать клеточные клоны с кариотипами 45,X и 47,XYY (могут присутствовать все три клеточных клона в зависимости от того, в какой момент нарушилось расхождение хромосом). При запаздывании хромосом в случае кариотипа 46,XY возможен мозаицизм с кариотипом 45,X/46,XY.

Показания к определению кариотипа

Возраст матери

Частота хромосомных аномалий, связанных с половыми хромосомами - кариотипы 47,XXY и 47,XXX, тоже повышается. Кроме того, крайне важно выяснить наличие хромосомных аномалий у ближайших родственников - это может еще больше увеличить риск. Если при одной из прошлых беременностей у данной пары уже отмечена трисомия, риск ее повторного возникновения составляет около 1%. Кроме того, с возрастом матери повышается риск самопроизвольного аборта: у женщин до 30 лет он составляет 10-15%, а к 40 годам постепенно возрастает до 30-40%. В значительной степени это обусловлено ростом частоты хромосомных аномалий у плода.

Возраст отца, в отличие от возраста матери, по-видимому, не влияет на риск трисомии. Однако чем старше отец, тем выше у ребенка совокупный риск аутосомно-доминантных заболеваний, таких как синдром Марфана, нейрофиброматоз, ахондроплазия и синдром Апера. Кроме того, если у такой пары родится дочь, то у ее сыновей будет повышен риск сцепленных с Х-хромосомой рецессивных заболеваний (гемофилии А и В, миопатии Дюшенна и других). Однако риск любого из этих заболеваний при неотягощенном семейном анамнезе невелик, поэтому независимо от возраста отца обследование не имеет особого смысла.

Самопроизвольный аборт, в том числе привычный

Хорошо известно, что при самопроизвольном аборте в I триместре беременности примерно у половины эмбрионов обнаруживают хромосомные аномалии. При самопроизвольном аборте на более поздних сроках доля плодов с хромосомными аномалиями сокращается: при аборте на сроке 12-15 нед их выявляют у 40%, 16- 19 нед - у 20% плодов. У недоношенных детей, рожденных на сроке беременности 20-23 нед, частота хромосомных аномалий составляет 12%, на сроке 24- 28 нед - 8%, на более поздних сроках - 5%, а у доношенных детей - около 0,5%. Следует подчеркнуть, что на привычный самопроизвольный аборт (который определяется как два и более самопроизвольных аборта подряд) эта статистика не распространяется. К сожалению, не исключено, что в этих случаях полиплоидия, анеуплоидия или даже сочетание одного с другим могут возникать раз за разом. Крупных исследований с участием большой группы женщин с привычным самопроизвольным абортом не проводилось. Boue et al. определили кариотип плода при 1500 самопроизвольных абортах и пришли к выводу, что повторяющиеся случаи анеуплоидии при привычном самопроизвольном аборте вряд ли широко распространены и, скорее всего, обусловлены случайным совпадением. При новом зачатии у пары, у которой в прошлом отмечен самопроизвольный аборт с хромосомными аномалиями, риск повторения такого аборта не повышен, что говорит о редкости повторяющейся анеуплоидии. Оба исследования страдают погрешностями при отборе материала, поскольку он был получен из образцов, отправленных в цитогенетическую лабораторию. Требуется крупное проспективное исследование с определением кариотипа нескольких плодов от каждой участницы, страдающей привычным самопроизвольным абортом.

В случаях привычного самопроизвольного аборта у обоих партнеров чаще, чем обычно, выявляются две разновидности хромосомных транслокаций - робертсоновские и реципрокные; и те, и другие могут быть компенсированными или де-компенсированными. При компенсированной транслокации фенотип нормален - потери хромосомного материала нет или она незначительна. Декомпенсированная транслокация часто ведет к неблагоприятным фенотипическим проявлениям, среди которых нередко оказываются умственная отсталость и различные пороки развития.

Робертсоновские транслокации происходят между акроцентрическими хромосомами (у которых одно плечо намного короче другого), а именно, 13, 14, 15, 21 и 22-й. При этом происходит слияние длинных плеч обеих хромосом, а генетический материал из коротких плеч предположительно теряется. В случае компенсированной робертсоновской транслокации в кариотипе оказывается 45 хромосом. При декомпенсированной транслокации хромосом 46, следовательно, имеется трисомия по одной из участвовавших в транслокации хромосом (по длинному плечу). В случае такой трисомии по 21-й хромосоме развивается синдром Дауна. Поскольку декомпенсированная транслокация встречается в 3-4% случаев синдрома Дауна, кариотипирование родителей при синдроме Дауна у ребенка необходимо для оценки того, насколько велик риск повторного рождения больного ребенка.

При реципрокной транслокации две разные хромосомы обмениваются генетическим материалом. При компенсированной транслокации в кариотипе 46 хромосом, а при декомпенсированной есть делеции либо дупликации (частичные моносомии и трисомии). Поскольку при транслокациях возможно рождение как нормальных детей, так и детей с пороками развития, а также самопроизвольные аборты, в этих случаях особенно необходимо кариотипирование.

Причиной привычного самопроизвольного аборта и самопроизвольного аборта в сочетании с тяжелыми пороками развития плода может оказаться наличие компенсированной транслокации у любого из партнеров. В подобных случаях ее частота составляет приблизительно 4%, что в 10-30 раз превышает норму. В случае более частой реципрокной транслокации (около двух третей случаев у пар с привычным абортом) этот риск для большинства транслокаций примерно одинаков, не зависит от того, кто из партнеров является носителем, и составляет 5-20%. Однако при робертсоновской транслокации, затрагивающей 21-ю хромосому, риск выше, если носительницей транслокации является женщина. При наличии робертсоновской транслокации у матери риск рождения ребенка с синдромом Дауна составляет 10-15%, а при наличии ее у отца - 0-2%. Для остальных робертсоновских транслокаций риск хромосомных аномалий у потомства намного ниже.

Часть исследователей сообщают о том, что у женщин с привычным самопроизвольным абортом чаще наблюдается аномальная инактивация Х-хромосомы. В норме одна из Х-хромосом инактивируется случайным образом, но заметные отклонения от этого (например, инактивация одной и той же Х-хромосомы более чем в 90% клеток), по-видимому, чаще встречаются у женщин с привычным абортом (около 15%), чем в контрольной группе (около 5%). Можно предположить, что в основном инактивируется Х-хромосома, несущая мутантный аллель (эмбрионы мужского пола, унаследовавшие эту Х-хромосому, погибают). Эта гипотеза пока не доказана, поскольку не все исследователи подтверждают наблюдения о повышенной частоте аномальной инактивации Х-хромосомы при привычном аборте.

Первичный гипогонадизм

Первичная аменорея в сочетании с повышенным уровнем гонадотропных гормонов у женщины детородного возраста всегда должна служить показанием к определению кариотипа. Более чем у половины таких женщин обнаруживаются хромосомные аномалии, чаще всего кариотип 46,XY (синдром Суайра) или 45,X (синдром Тернера). Наличие Y-хромосомы сопряжено с высоким риском герминогенных опухолей: при синдроме Суайра он достигает 20-25%, а при кариотипе 45,X/46,XY - 15%. Женщины с кариоти-пом 45,X (в том числе с мозаицизмом) чаще всего небольшого роста (менее 160 см при наличии Y-хромосомы и, как правило, менее 150 см в ее отсутствие), у 90-95% из них отсутствуют вторичные половые признаки. Кроме того, в половине случаев синдрома Тернера выявляются пороки сердца (двустворчатый аортальный клапан и расширение аорты), а в 30% случаев - пороки развития почек. Описаны случаи разрыва аорты у женщин с синдромом Тернера, которые забеременели путем ЭКО с использованием донорских яйцеклеток. Для синдрома Суайра (дисгенезия гонад с кариотипом 46,XY) характерны нормальный рост, неразвитые молочные железы и тяжевидные гонады. Поскольку яички не функционируют, антимюллеров гормон не вырабатывается, и развиваются полноценные влагалище и матка.

При вторичной аменорее вероятность обнаружить хромосомную аномалию намного ниже, однако при наличии определенных симптомов она повышается. При росте больной менее 160 см показано определение кариотипа, поскольку у 5-10% девушек с синдромом Тернера наблюдается нормальное половое созревание и наступает менархе. Кроме того, если у женщины имеется делеция в Х-хромосоме (чаше всего в длинном плече), она может передать ее дочери, у которой также будет повышен риск преждевременной недостаточности яичников. У таких женщин может наблюдаться фенотип синдрома Тернера, в частности, их рост обычно не превышает 160 см. Кроме того, у женщин с кариотипом 46,XX преждевременная недостаточность яичников может указывать на носительство синдрома ломкой Х-хромосомы.

Повышение уровня гонадотропных гормонов у мужчин примерно в 10-15% случаев сопряжено с хромосомными аномалиями. Уровень тестостерона, как правило, низкий или близок к нижней границе нормы, уровни гонадотропных гормонов повышены, яички маленькие, плотные. При синдроме Клайнфельтера повышен риск сахарного диабета, опухолей яичек и рака молочной железы, поэтому за мужчинами с этим синдромом необходимо тщательно наблюдать. У мужчин с кариотипом 46,XX также наблюдается первичный гипогонадизм; причина появления мужского фенотипа - транслокация между Х- и Y-хромосомами в 1-м делении мейоза, в результате чего расположенный на коротком плече Y-хромосомы ген определения пола (SRY) переносится на Х-хромосому. Поскольку у таких мужчин длинное плечо Y-хромосомы, на котором предположительно расположены гены сперматогенеза, у них наблюдается азооспермия.

При вторичном гипогонадизме как у мужчин, так и у женщин определять кариотип обычно имеет смысл только при множественных пороках развития или при подозрении на синдром Прадера - Вилли.

Тяжелая олигозооспермия или азооспермия

При тяжелой олигозооспермии или азооспермии также определяют кариотип: изредка при этом выявляются хромосомные аномалии, чаще всего транслокации. Причиной олигозооспермии или азооспермии они бывают редко, но если удается добиться зачатия, при хромосомных аномалиях есть риск самопроизвольного аборта и, что еще важнее, рождения ребенка с пороками развития. Изредка при тяжелой олигозооспермии у мужчин с нормально развитыми вторичными половыми признаками и нормальными уровнями гонадотропных гормонов обнаруживают кариотип 47,XXY.

Множественные пороки развития

При множественных пороках развития и умственной отсталости часто выявляются хромосомные аномалии, поэтому в таких случаях показано определение кариотипа. Помимо трисомий могут обнаруживаться частичные делеции в аутосомах (в том числе в длинном плече 18-й и 13-й хромосом).



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Сапожок деда мороза из пластиковых бутылок Сапожок из бутылки своими руками Сапожок деда мороза из пластиковых бутылок Сапожок из бутылки своими руками Рассказывает гинеколог: вред и польза постоянного использования ежедневных прокладок Рассказывает гинеколог: вред и польза постоянного использования ежедневных прокладок Красивые платья на выпускной длиной в пол Модные современные выпускные платья Красивые платья на выпускной длиной в пол Модные современные выпускные платья