Лучистая энергия. Общие сведения о лучистой энергии солнца и их применение Лучистая энергия физиологическое действие

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Воздействие на микроорганизмы различных форм лучистой энергии проявляется по-разному. В основе действия лежат те или иные химические или физические изменения, происходящие в клетках микроорганизмов и в окружающей среде.

Воздействие лучистой энергии подчиняется общим законам фотохимии – изменения могут быть вызваны только поглощенными лучами. Следовательно, для эффективности облучения большое значение имеет проникающая способность лучей.

Свет. В природе микроорганизмы постоянно подвергаются воздействию солнечной радиации. Свет необходим для жизни только фотосинтезирующих микробов, использующих световую энергию в процессе ассимиляции углекислого газа. Микроорганизмы, не способные к фотосинтезу, хорошо растут в темноте. Прямые солнечные лучи губительны для микроорганизмов; даже рассеянный свет подавляет в той или иной мере их рост. Однако развитие многих плесневых грибов в темноте протекает ненормально: при постоянном отсутствии света хорошо развивается только мицелий, а спорообразование тормозится.

Патогенные бактерии (за редким исключением) менее устойчивы к свету, чем сапрофитные.

Известно, что лучистая энергия переносится «порциями» – квантами. Действие кванта зависит от содержания в нем энергии. Количество энергии изменяется в зависимости от длины волны: чем она больше, тем меньше энергия кванта.

Инфракрасные лучи (ИК-лучи) обладают сравнительно большой длиной волны. Энергия этих излучений недостаточна, чтобы вызвать фотохимические изменения в поглощающих их веществах. В основном она превращается в тепло, что и оказывает губительное действие на микроорганизмы при использовании ИК-излучений для термической обработки продуктов.

Ультрафиолетовые лучи. Эти лучи являются наиболее активной частью солнечного спектра, обусловливающей его бактерицидное действие. Они обладают высокой энергией, доста-

точной для того, чтобы вызвать фотохимические изменения в поглощающих их молекулах субстрата и клетки.

Наибольшим бактерицидным действием обладают лучи с длиной волны 250–260 нм.

Эффективность воздействия УФ-лучей на микроорганизмы зависит от дозы облучения, т. е. от количества поглощенной энергии. Кроме того, имеет значение характер облучаемого субстрата: его рН, степень обсеменения микробами, а также температура.

Очень малые дозы облучения действуют даже стимулирующе на отдельные функции микроорганизмов. Более высокие,

но не приводящие к гибели дозы вызывают торможение отдельных процессов обмена, изменяют свойства микроорганизмов, вплоть до наследственных изменений. Это используется на практике для получения вариантов микроорганизмов с высокой способностью продуцировать антибиотики, ферменты и другие биологически активные вещества. Дальнейшее увеличение дозы" приводит к гибели. При ■ дозе ниже смертельной возможно восстановление (реактивация) нормальной жизнедеятельности.


Различные микроорганизмы неодинаково чувствительны к одной и той же дозе облучения (рис. 24, 25).

Среди бесспоровых бактерий особенно чувствительны к облучению пигментные бактерии, выделяющие пигмент в окру-

жающую среду. Пигментные бактерии, содержащие каротино-идные пигменты, чрезвычайно стойки, так как каротиноидные пигменты обладают защитными свойствами против УФ-лучей.

Споры бактерий значительно устойчивее к действию УФ-лучей, чем вегетативные клетки. Чтобы убить споры, требуется в 4–5 раз больше энергии (см. табл. 9). Споры грибов более выносливы, чем мицелий.

Гибель микроорганизмов может быть следствием как непосредственного воздействия УФ-лучей на клетки, так и неблагоприятного для них изменения облученного субстрата.

УФ-лучи инактивируют ферменты, они адсорбируются важнейшими веществами

клетки (белками, нуклеиновыми кислотами) и вызывают изменения – повреждение их молекул. В облучаемой среде могут образоваться вещества (перекись водорода, озон и др.), губительно действующие на микроорганизмы.

В настоящее время УФ-лучи довольно широко применяют на практике. Искусственным источником ультрафиолетового излучения чаще служат аргонно-ртутные лампы низкого давления, называемые бактерицидными (БУВ-15,

Ультрафиолетовыми лучами дезинфицируют воздух холодильных камер, лечебных и производственных помещений. Обработка УФ-лучами в течение 6 ч уничтожает до 80 % бактерий и плесеней, находящихся в воздухе. Такие лучи могут быть использованы для предотвращения инфекции извне при розливе, фасовке и упаковке пищевых продуктов, лечебных препаратов, а также для обеззараживания тары, упаковочных материалов, оборудования, посуды (в предприятиях общественного питания).

В последнее время бактерицидные свойства УФ-лучей успешно применяют для дезинфекции питьевой воды.

Стерилизация пищевых продуктов с помощью УФ-лучей затрудняется их низкой проникающей способностью, в связи с чем действие этих лучей проявляется только на поверхности или в очень тонком слое. Тем не менее известно, что облучение охлажденных мяса, мясопродуктов удлиняет срок их хранения в 2 3 раза.

Значительная часть сонечной радиации, поступающей на Землю, охватывает диапазон волн в пределах 0,15 - 4,0 ммк. Количество солнечной энергии, поступающее на поверхность Земли под прямым углом, называется солнечной постоянной. Оно равно 1,4·10-3 дж (м2/с).

Земной поверхности достигает большая часть излучения видимой области спектра, 30

% - инфракрасной и длинноволновая ультрафиолетовой. Поверхности Земли достигают:

Инфракрасные лучи (f - 3·10в11 Гц, - 3·10в12, λ от 710 - 3000 нм) – 45% (ИК-

излучение составляет 50% излучения Солнца).

Видимые лучи (3·10в12 – 7,5·10в 16, λ 400 – 710 нм,) – 48%

Ультрафиолетовые лучи (7,5·10в 16 -10в17, λ 400-10 нм) -7%.

Небольшая часть солнечной радиации уходит обратнл в атмосферу. Количество отражённой радиации зависит от от отражающей способности (альбедо) поверхности. Так, снег может отражать 80 % солнечного излучения, поэтому он нагревается медленно. Травянистая поверхность отражает 20 %, а тёмные почвы – лишь 10 5 приходящей радиации.

Большая часть поглощаемой почвой и водоёмами солнечной энергии затрачивается на испарение воды. При конденсации воды выделяется тепло, которое нагревает атмосферу. Нагрев атмосферы происходит и за счёт поглощения 20-25 % солнечной радиации.

Инфракрасное излучение.

Инфракрасное излучение (ИК-излучение) – это невидимое человеческим злазом электромагнитное излучение. Оптические свойства вещества в ИК-излучении значительно отличаюися от таковых в видимом спектре. Напимер, слой воды в несколько см непроницаем для ИК-излучения с λ >1 мкм.

Около 20% инфракрасного излучения солнечного спектра поглощается пылью, углекислым газом и водяным паром в 10-километровом слое атмосферы, примыкающей к поверхности Земли. При этом поглощённая энергия превращаентся в тепло.

ИК-излучение составляет большую часть излучения ламп накаливания (невыносимая жара при съёмках в павильонах), газоразрядных ламп. ИК-излучения испускают рубиновые лазеры.

Длинноволновая часть инфракрасного излучения (> 1,4 мкм) задерживается в основном поверхностными слоями кожи, вызывая жжение (калящие лучи). Средне- и коротковолновая часть ИК-лучей и красная састь оптического излучения протникает на глубину до 3х см. При больших колическтвах энергии могут вызвать перезревания. Солнечный удар – результат местного перегревания головного мозга.

Видимое излучение – свет.

Примерно половина радиации приходится на волны с длиной волны между 0,38 и 0,87 ммк. Это видимый человеческим глазом спектр, воспринимаемый как свет.

Одна из видимых сторон воздействия лучистой энергии – освещённость. Известно, что свет оздоравливает среду (в том числе бактерицидное действие). Половина всей тепловой энергии солнца содержиться в оптической части лучистой энергии Солнца. Свет необходим для нормального протекания физиологических процессов.

Влияние на организм:

Стимулирует жизнедеятельность;

Усиливает обмен веществ;

Улучшает общее самочувствие;

Уличшает настроение;

Повышает работоспособность.

Недостаток света:

Отрицательное влияние на функции нервного анализатора (повышается его утомляемость):

Повышается утомляемость ЦНС;

Снижается производительность труда;

Повышается производственный травмвтизм;

Развиваются депрессивные состояния.

С недостаточной освешённостью в настоящее время связывают заболевание, имеющее несколько названий: «осенне-зимняя депрессия», «эмоциональное сезонное заболевание», «аффективное сезонное расстройство» (Seasonal Affective Disorder – SAD). Чем меньше естественная освещённость местности, тем чаще встречается это расстройство. По статистическим данным 5-10% людей имеют признаки этого симптомокомплекса (75% - женщины).

Темнота ведёт к синтезу мелатонина, который у здоровых регулирует время циклов ночного сна, чтобы он был целебным и способствующим длительной жизни. Однако, если продукция мелатонина не прекращается в утренне время благодаря влиянию света на эпифиз, в течение дня из-за неадекватно высоких дневному времени уровням этого гормона развиваются летаргия и депрессия.

Признаки SAD:

Признаки депрессии;

Трудности с просыпанием;

Снижение продуктивности в работе;

Уменьшение социальных контактов;

Увеличение потребности в углеводах;

Увеличение веса.

Может тыть снижение активности иммунной системы, что проявляется увеличением восприимчивости к инфекционным (вирусным и бактериальным) заболеваниям.

Эти признаки исчезают в весенне и летнее время, когда значительно увеличивается продолжительность светового дня.

Осенне-зимняя депресси в настоящий момент лечится светом. Хороший эффект даёт светотерапия с интенсивностью 10 000 люкс в утренние часы. Это превышает примерно в 20 раз обычную внутреннюю освещённость. Выбор длительности терапии индивидуально для каждого человека. Чаще всего длительность процедуры длиться 15 минут. В течение этого времени можно заниматься любым делом (читать, принимать пищу, убирать квартиру и т.д.). Положительный эффект отмечается уже через несколько дней. Вся симптоматика полностью прекращается через несколько недель. Побочным эффектом могут быть головные боли.

Эффект лечения связан с регуляцией активности эпифиза, который модулирует продукции мелатонина и серотонина. Мелатонин ответственен за засыпание, а серотонин – за пробуждение.

Показаны также:

Психотерапия;

Антидепрессанты.

В то же время в настоящее время может наблюдаться другой тип нарушения биологических ритмов, связанный с современным образом жизни. Длительный искусственный свет ведёт к снижению ингибиторного эффекта мелатонина на активность половых желез. Это способствует ускорению полового созревания.

Ультрафиолетовое (УФ) излучение

Ультрафиолетовое излучение относиться к коротковолновой части солнечного спектра. Граничит с одной стороны с самой мягкой частью ионизирующего излучения (рентгеновское), с другой - с видимой частью спектра. Составляет 9% всей энергии излучаемой Солнцем. На границе с атмосферой сосатляет 5% естественного солнечного света, до поверхности Земли доходит 1%.

Ультрафиолетовок излучение Солнца ионизирует газы верхних слоёв атмосферв Земли, что приводит к образованию ионосферы. Короткие УФ-лучи задерживаются слоем озона на высоте около 200 км. Поэтому до земной поверхности доходят лишь лучи 400-290 нм. Озоновые дыры способствуют проникновению коротковолновой части спектра Уф-лучей.

Интенсивность действия зависит от:

Географического местоположения (широты);

Времени суток,

Метеоусловий.

Биологические свойства УФ-тзлучения зависит от длины волны. Выделяют 3 диапазона УФ-излучения:

1. Область А (400-320 нм) - флюоресцентная, загарная.Это длинноволновое излучение, являющееся доминирующей частью Практически не поглощается в атмосфере, поэтому достигает поверхности Земли. Испускается также специальными лампами, применяемыми в соляриях.

Действие:

Вызывает свечение некоторых веществ (люминофоров, некоторых витаминов);

Слабое общестимулирующее действие;

Превращение тирозина в меланин (защита организма от избытка УФизлучения).

Превращение тирозина в меланин происходит в меланоцитах. Эти клетки расположены в базальном слое эпидермиса. Меланоциты – это пигментные клетки нейроэктодермального происхождения. Они распределены по телу неравномерно. Например, в коже лба их в 3 раза больше, чем в верхних конечностях. Бледные люди и смуглые содержат одинаковое количество пигментных клеток, однако содержание меланина в них разное. Меланоциты содержат фермент тиразиназу, участвующий в превращении тирозина в меланин.

2. Область В (320 – 280 нм) – средневолновое, загарное УФ-излучение. Значительная часть этого диапозона поглощается стратосферным озоном.

Действие:

Улучшение физической и умственной работоспособности;

Повышение неспецифического иммунитета;

Повышение сопротивляемости организма к действию инфекционных, токсических, канцерогенных агентов.

Усиление регенерации тканей;

Усиление роста.

Это связано с возбуждением аминокислот (тирозин, триптофан, фенилаланин и др.), приримидиновых и пуриновых оснований (тимин, цитозин и др.). Это ведёт к распаду белковых молекул (фотолиз) с образованием БАВ (холин, ацетилхолин, гистамин и др.). БАВ активируют обменные и трофические процессы.

3. Область С (280 – 200 нм) – коротковолновое, бактерицидное излучение. Активно поглощается озоновым слоем атмосферы.

Действие:

Синтез витамина D;

Бактерицидное действие.

Бактерицидным действием, хотя и менее выраженным, обладают другие диапахоны УФ-излучения, а также видимое излучение.

N!B! УФ-лучи среднего и котротковолнового спектра в больших дозировках могут вызвать изменения в нуклеиновых кислотах и привести к клеточным мутациям. В то же время длинноволновое излучение способствует восстановлению нуклеиновых кислот.

4. Выделяется также область D (315 – 265 нм), обладающая выраженным антирахи-

тическим действием.

Показано, что для удовлетворения суточной потребности в ивтамине D необходимо около 60 минимальных эритемных доз (МЭД) на открытые участки тела (лицо, шея, руки). Для этого необходимо пребывать ежедневно на солнечном свету в течение 15 минут.

Недостаток УФ-излучения ведёт к:

Рахиту;

Снижению общей резистентности;

Нарушению обменных процессов (в том числе остеопорозу?).

Избыток УФ-излучения ведёт к:

Повышенной потребности организма в незаменимых аминокислотах, витаминах, солях Са и т.д.;

Инактивации витамина D (перевод холекальцеферола в индефферентные и токсические вещества);

Образование перекисных соединений и эпоксидных веществ, которые могут вызвать хромосомные абберацтт, мутагенный и канцерогенный эффект.

Обострение некоторых хронических заболеваний (туберкулёз, ЯБЖ, ревматизм, гломерулонефрит и др.);

Развитие фотофтальмии (фотоконъюнктивитов и фотокератитов) через 2 – 14 часов после облучения. Развитие фотофтальмии может быть в результате действия: А – прямого солнечного света, В – рассеянного и отражённого (снег, песок в пустыне), С

при работе с искусственнными источниками;

Димеризации белка хрусталина (кристаллина), что индуцирует развитие катаракты;

Повышенному риску повреждения сетчатки у лиц с удалённым хрусталиком (даже областью А).

У лиц с ферментопатиями к дерматитам;

Развитию злокачественных новообразований кожи (меланомы, базадьноклеточной карциномы, сквамозно-клеточной карцины),

Иммуннодепрессии (измению соотношения субпопудяций лимфоцитов, уменьшению числа клеток Лангерганса в коже и снижению их функциональной активности) → к снижению устойчивости к инфекционным заболеваниям,

Ускоренному старению кожи.

Естественная защита организма от УФО:

1. Образование загара, связанного с появлением меланина, который:

способен поглощать фотоны и таким образом ослаблять действие излучения;

является ловушкой для свободных радикалов, образующихся при облучении кожи.

2. Ороговение верхнего слоя кожи с последующим шелушением.

3. Образование транс-цис-формы урокановой (урокаиновой) кислоты. Это соединение способно захватывть кванты УФ-излучения. Выделяется с потом человека. В темноте происходит обратная реакция с выделением тепла.

Критерием чувствительности кожи к УФ-излучению является ожоговый порог загара. Он характеризуется временем первичного воздействия УФ-излучения (то есть до формирования пигментации), после которого возможна безошибочная репарация ДНК.

В средних широтах выделяют 4 типа кожи :

5. Особо чувствительная светлая кожа. Быстро краснеет, плохо загарает. Индивидуумы отличаются голубым или зелёным цветом глаз, наличием веснушек, иногда рыжим цветом волос. Ожоговый порог загара – 5-10 минут.

6. Чувствительная кожа. У людей данного типа голубые, зелёные или серые глаза, светло-русые или каштановые волосы. Ожоговый порог загара – 10-20 минут.

7. Нормальная кожа (20-30 мин.). Люди с серыми или светло-карими глазами, тёмно-русыми или каштановыми волосами.

8. Нечувствительная кожа (30-45 мин.). Индивидуумы с тёмными глазами, смуглой кожей и тёмным цветом волос.

Возможна модификация светочувствительности кожи. Вещества, увеличивающие светочувствительность кожи, называются фотосенсибилизаторами.

Фотосенсибилизаторы : аспирин, бруфен, индоцид, либриум, бактрим, лазикс, пенициллин, фуранокумарины растений (сельдерей).

Группы риска по развитию опухолей кожи:

светлая, слабо пигментированная кожа,

солнечные ожоги, полученные в возрасте до 15 лет,

наличие большого количества родимых пятен,

наличие родимых пятен более 1.5 см в диаметре.

Хотя УФО имеет приорететное значение в в развитии злокачественных новообразова-

ний кожи, существенным фактором риска является контакт с канцерогенными вещества-

ми , такими как содержащимся в атмосфенной пыли никелем и его подвижными формами в почве.

Защита от избыточного действия УФИ:

1. Необходимо ограничить время пребывания под интенсивными солнечными лучами, особенно в промежутке времени 10.00 – 14.00 часов, пикового для активности УФИ. Чем короче тень, тем разрушительней активность УФИ.

2. Следует носить солнцезащитные очки (стекляные или пластмассовые с защитой от УФИ).

3. Применение фотопротекторов.

4. Применение солнцезащитных кремов.

5. Питание с высоким содержанием незаменимых аминокислот, витаминов, макро- и микроэлементов (в первую очередь нутринтов с антиоксидантеой активностью).

6. Регулярное обследование у дерматолога лицами из группы риска по развитию рака кожи. Сигналоми для немедленного обращения к врачу служат появление новых ро-

димых пятен, потеря чётких границ, изменяющаяся пигментация, зуд и кровоточивость.

Необходимо помнить о том, что УФИ интенсивно отражается от песка, снега, льда, бетона, что может увеличить интенсивность воздействия УФИ на 10-50 %. Следует помнить о том, что УФИ, особенно УФА оказывает воздействие на человека даже в облачные дни.

Фотопротекторы – вещества с защитным действием против повреждающего УФИ. Защитное действие связано с поглощением или рассеиванием энергии фотонов.

Фотопротекторы;

Парааминобензойная кислота и её эфиры;

Меланин, полученный из природных источников (например, грибы). Фотопротекторы добавляются в солнцезащитные кремы и лосьёны.

Солнцезащитные кремы.

Имеются 2 типа – с физическим эффектом и с химическим эффектом. Крем следует наносить за 15-30 минут до принятия солнечной ванны, а также повторно – каждые 2 последующих часа.

Солнцезащитные кремы с физическим эффектом содержат соединения типа диоксида титана, окиси цинка и талька. Их присутствие ведёт к отражению УФА и УФВ лучей.

К солнцезащитным кремам с химическим эффектом относятся изделия, содержащие 2-5 % бензофенона или его производных (оксибензон, бензофенон-3). Эти соединения поглощают УФИ и в результате распадаются на 2 части, что ведёт к поглощению энергии УФИ. Побочным эффектом является образование двух свободно-радикальных фрагментов, которые могут повреждать клетки.

Солнцезащитный крем SPF-15 отфильтровывает около 94% УФИ, SPF-30 задерхивает 97% УФИ, преимущественно УФВ. Фильтрация УФА в химических солнцезащиных кремах мала и составляет 10% от поглощения УФВ.

ЛУЧИСТАЯ ЭНЕРГИЯ , электромагнитные колебания различной частоты и соответствеи-ло различной длины волны. В эту пеструю но своим свойствам группу, объединяемую ло.д термином «лучистая энергия», входят инфракрасные лучи с длиной волны 0,3 мм -0,75 /г, лучи видимого света от красных (750 т/л) до фиолетовых (400 т/л), ультрафиолетовые лучи (400 m/i -10 т/л), рентген. лучи (10 m/i - 0,1 А) и & лучи радия (1А= =0,01А). Их биолог, и терапевтич. действие чрезвычайно различно и определяется в первую очередь длиной волны соответствующих лучей и степенью проницаемости для них тканей организма. Биологическое действиеЛ.э. В основе многообразного влияния Л. э. на «иол. объекты лежит воздействие лучей на течение физ., физ.-хим. и хим. процессов. В качестве примера можно привести ионизацию и перезарядку под влиянием ультрафиолетовых лучей, изменение величины поверхностного натяжения, вязкости, проницаемости, а из влияний на хим. процессы- полимеризацию молекул кислорода, в молекулы озона, процессы расщепления, окис-еления и восстановления. Подробно о биол. действии отдельных видов Л. э.-см. Свет, Тещлота, Рентгеновские лучи, Инфракрасные лучи, Ультрафиолетовые лучи. Действие Л. э. на человека в производственной обстановке. В производстве.мы встречаемся с тепловым воздействием Л. э. на рабочих всюду, где имеются установки.для нагреваний (печи, горны и т. п.) либо нагретые предметы. Интенсивность излучения и его спектр, состав зависят главным «о.3разом от нагрева этих источников. При прочих равных условиях общая энергия излучения согласно закону Стефана-Больц-мана пропорциональна четвертой степени абсод. t° излучающего тела. На производстве: мы встречаем радиации с различными спектрами: либо непрерывными, сплошными, исходящими от нагретых твердых и жидких тел. либо прерывистыми, полосатыми, источником к-рых являются нагретые газы. Энергия отдельных участков спектра у первых располагается т. о., что в определенном участке, вполне характерном для каждой t° иагрева, количество энергии излучения является максимальным, круто спадая в сторону коротких лучей и более полого в сторону длинных. Эту зависимость выражает «формула Вина: 1 тс№ . Т=К, где l max -длина волны (в микронах) того спектрального уча- ЭНЕРГИЯ 436 стка, в котором находится максимум энергии излучения, Т - абсолютная температура нагрева, К - константа, равная 2 960. Эта формула дает возможность заключить, что для подавляющего большинства производственных источников излучения максимум их энергии приходится на инфракрасную часть спектра и почти вся энергия их общего потока падает на инфракрасное излучение; в противоположность этому максимум энергии солнечного спектра находится в к пшх =А1Ът/1, что соответствует темп-ре 6 000°. Следующей особенностью, встречающейся на производстве радиации, является характер ее распространения в виде лучей расходящихся, а не параллельных (как у солнечного излучения). Это обстоятельство делает непригодным для применения на производстве ряд измерительных приборов, рассчитанных на параллельный ход солнечной радиации. Пригодной для применения в производственных условиях оказалась только специально сконструированная проф. Ка-литиным модель актинометра, дающая возможность определять радиацию напряженностью в 20-30 калорий и, благодаря простоте работы с ней, нашедшая уже широкое применение в сан.-гиг. практике (см. Актинометр ия). В производственных условиях встречаются источники Л. э. неподвижные (горны, печи и др.) и подвижные (обрабатываемые предметы, болванки и т. д.). Среди первых мы различаем источники с открытым пламенем (например горны), а также нагретые предметы, излучающие энергию в пространство, и источники, окруженные какой-либо оболочкой, задерживающей поток Л. э. (напр. печи). У последних интенсивность излучения может сильно колебаться в зависимости от состояния оболочки, наличия отверстий, открывания или закрывания крышек и заслонок и т. д. Максимальные интенсивности радиации наблюдаются именно у этих источников; так напр. у мартеновских печей при закрытых заслонках, при значительной их изношенности и наличии вокруг них зазоров установлена была на расстоянии 1,5 м напряженность радиации до 10 калорий. При открытии загрузочных окон интенсивность излучения на расстоянии 1 м может доходить до 30-40 и больше калорий. (Для сравнения отметим, что тепловой эффект солнечного излучения на границе земной поверхности, по Abbot"у, не превышает 1,937 калорий.) Из других наблюдений на производстве можно привести следующие данные: у нагревательных колодцев" Джерса в прокатных цехах на расстоянии 1 м найдено 0,51-3,5 калорий, у листопрокатных станов в момент прокатки на расстоянии 1 м -13,8 калорий; в сталелитейных у печей Сименса при их нагреве от 1 600-2 100°-10,5-16,5 калорий, на расстоянии 3 м -1,2-2,0 калорий; радиация от льющейся стали при измерении непосредственно около изложниц - 17,85 - 20,34 калорий, на расстоянии - 4,0 - 4,8 калорий. В кузницах источниками радиации являются либо горны, у которых наблюдалась напряженность от 1,0 до 13,0 калорий, либо обрабатываемые предметы, 4&7 ЛУЧИСТАЯ ЭНЕРГИЯ 4S8 интенсивность излучения от к-рых зависит от площади излучающей поверхности. У стеклоплавильных печей интенсивность излучения на рабочем месте равнялась 0,2- 10 калорий. Все авторы отмечают крайнюю неравномерность распределения Л. э. в пространстве. Основным моментом, определяющим степень теплового воздействия Л. э. на рабочего, помимо интенсивности является длительность непрерывного воздействия Л.э., весьма различная в зависимости от характера производственных процессов. Серьезное значение имеют также длительность и частота перерывов в облучении, состояние окружающего воздуха (его t°, влажность, подвижность и прозрачность) и наконец тяжесть самого труда. Большое значение имеет и площадь облучаемой поверхности тела; в этом отношении на производстве наблюдаются резкие различия. Особенно тягостным бывает облучение со всех сторон, что например имеет место при выгрузке обожженных изделий из фарфорово- фаянсовых горнов. Для каждого производства существуют вполне характерные комбинации перечисленных выше условий с присущей ему же интенсивностью излучения; это оказывает влияние и на чувствительность рабочих к воздействию последнего, вследствие чего и оценка влияния Л. э. на рабочих у разных авторов различна. Отмечаются также различия в чувствительности кожи к воздействию облучений различного спектрального состава: лучи с более короткой волной {напр, солнечные) переносятся легче. В основе этих различий лежит разная способность этих лучей проникать в глубь тканей тела. Наибольшей проникающей способностью, по Sonne, обладают красные лучи видимого спектра. Лучи видимого света проникают в глубь тканей и поглощаются только там. При учете теплового эффекта Л.э. на организм рабочего различают местное действие на кожу, общее действие на весь организм, преимущественно на терморегуляцию, а также специфическое действие на орган зрения.-При местном действии на кожу мы имеем дело с тепловым эффектом поглощенной радиации со всеми вытекающими отсюда последствиями: поднятием t° кожи, покраснением, потооделением, ощущением тепла при малых интенсивностях, могущим при больших интенсивностях перейти в болезненное обжигающее ощущение, а затем в ожог первой и второй степени с образованием пузырей. Явлений фотохим. характера, как при воздействии ультрафиолетовых лучей,здесь нет; отсутствует также характерный для последних лятентный период; эритема на коже появляется сейчас же после облучения и легко исчезает, если не переходит в ожог. Темп, кожи поднимается, доходя при длительных степенях облучения до 38° и выше; при облучениях большей интенсивности за первоначальным нагревом кожи следует потоотделение, что вызывает понижение ее t°. В результате повторных облучений развивается пигментация кожи (Ullmann); при длящемся годами воздействии развивается хрон. гиперемия кожи, на отдельных местах образуются сосудистые расширения, и в заключение может получиться атрофия кожи. Вопрос о развитии в результате длительного воздействия Л. э. кожных новообразований еще не выяснен.- Наблюдения над общим действием Л. э. на организм рабочих велись преимущественно в производственных условиях, где чрезвычайно трудно выделить ее специфический эффект, т. к. одновременно на организм рабочего действуют и другие мощные факторы: высокая t° окружающего воздуха и тяжелый физ. труд. Воздействие это сказывается особенно ясно в нарушении терморегуляции, в усиленном потоотделении, достигающем иногда 9-10 л в течение восьмичасового рабочего дня, со всеми вытекающими отсюда последствиями нарушения водно-солевого обмена. Общая нагрузка сердечно-сосудистой системы у работающих в горячих цехах при наличии Л. э., как показывает ряд наблюдений, достигает чрезвычайно больших степеней. Так напр. Арка-диевский наблюдал у кочегаров, производивших чистку топок в течение 9-26 мин. при напряженности радиации от 5 до 11 калорий и при резких температурных колебаниях воздуха (от- 1,5° до +28°), следующие явления: учащение пульса до 180-200 ударов в 1 минуту, дыхания до 39-42 в минуту; t° тела доходила до 38-40°, кровяное давление падало на 20-30 мм, рабочие жаловались на головокружение, одышку, сердцебиение и т. д.; кожные покровы и склера сильно краснели, рабочий обливался потом. Все эти характерные для состояния перегревания организма явления очевидно под воздействием Л. э. значительно усиливаются, выделить однако ее специфическую роль затруднительно. Весь метеорологическ. комплекс горяч, цехов, неравномерность нагревания отдельных поверхностей тела, сквозняки и т. д. создают благоприятные условия для термических травм; при особо же неблагоприятных условиях может наступить при перегревании всего организма тепловой удар.--Действие Л. э. на глаза в первую очередь сводится к воздействию больших яркостей источников Л. э. Причина столь часто описанной катаракты стеклодувов и рабочих горячих цехов вполне точно не установлена. Признаваемое большинством авторов происхождение ее от воздействия коротких инфракрасных лучей, т. н. лучей Фохта, с длиной волны не свыше 1,5 р. Краупа оспаривает (см. Катаракта). Для устранения вредного воздействия Л. э. на глаза применяют специальные защитные очки (см.). Борьба с вредным влиянием Л. э. на производстве ведется с помощью мер, способствующих ослаблению радиации: ограждение ее источников, термоизоляция, щиты и экраны, паровые и водяные завесы; на теле рабочего спецодежда и другие индивидуальные защитные приспособления (рукавицы, фартуки и т. п.); либо наконец применяют непосредственное охлаждение поверхности тела рабочего при помощи специальных обдувающих вентиляционных установок:(см. также Горячие цеха). Эффективность всех этих мероприятий в значитель- ной степени зависит от характера остальных метеорол. условий на рабочем месте, почему в этой борьбе первоочередную роль играют также все мероприятия, способствующие понижению t° окружающего воздуха. Порядок применения защитных мероприятий зависит в каждом случае от конкретных производственных условий. Л. э. втерапи и-см. Светолечение. Лит.: Мищенко И., Влияние лучистой энергии на белковую молекулу, Ж. эксп. биол. и мед., 1927, № 17; Неменов М., Рентгенология, т. I, М.-Л., 1925; Успехи эксперим. биологии, т. VIII, вып. 4, 1929 (ряд статей П. Ракицкого и др.); Фрай-фельд А., Лечение красными и инфракрасными лучами, Физиотерапия, 1927, № 5-6; X в о л ь-сон О., Физика наших дней, стр. 41-71, М.-Л., 1928; о н ж е, Основания учения о лучистой энергии (глава в книге-Фототерапия, П., 1916); CobetR., Die Hauttemperatur des Menschen, Erg. d. Physio-logie, B. XXV, 1926; Handbuch der gesamten Strah-lenheilkunde, Biologie, Pathologie u. Theraple, hrsg. v. P. Lazarus, B. I-II, Munchen, 1928 (лит.); H a u s-mann W., Grundzuge der Lichtbiologie und Licht-pathologie, Berlin, 1923; Kahler K., Messme-thoden der Sonnen- und Himmelstrahlung (Hndb. der biol. Arbeitsmethoden, hrsg. v. E. Abderhalden, Abt. 2, T. I, B.-Wien, 1923); L i n k e F., Die Sonnen-und Himmelstrahlung, Strahlentherapie, B. XXVIII, H. 1, 1928,- Pincussen L., Biologische Licht-wirkungen, Erg. d. Physiologie, B. XIX, 1921; о н ж е, Biologische Strahlenwirkung (Hndb. d. Biochemie, hrsg. v. C. Oppenheimer, B. VII, Jena, 1926); Son-n e C, Physiologische u. therapeutische Wirkungen des kunstlichen Lichts, Strahlentherapie, B. XX, 1925. Тепловой эффект в производственных условиях.- Галанин Н., Сравнительно - санитарная оценка труда при плавке стали на электро- и тигельно-литейных печах (Труды Ленингр. института гигиены труда и техники безопасности, т. II, в. 3, Л., 1928); Материалы Свердловского кабинета по изучению проф. заболеваний и Уральского обл. отд. труда, в. 1-Труд и здоровье мартеновских рабочих, Свердловск, 1928; Оздоровление труда и революция быта, Труды ин-та им. Обуха, в. 27 - Сан.-клин. характеристики профессий горячих цехов, М., 1927; С т о ж-к о в а-Г ольдфарб Н., Сравнительная оценка физиологических данных при работе на электрических и тигельных печах (Труды Ленингр. ин-та гигиены труда и техники безопасности, т. II, в. 3, Л., 1928); С у т к о в а я А. и Г у щ и н И., К вопросу о действии высокой t° и лучистой энергии на центр, нервную систему, Гигиена труда, 1928, № 10; Труды Ленинградского губ. отд. труда, т. I, в. 1- Лучистая энергия, Л., 1927; Труды и материалы ■Укр. гос. ин-та патологии и гигиены труда, в. 7- Сталинский филиал, Сталин, 1928; Ульман К., Проф. повреждения кожи, вызываемые действием высокой температуры (глава в книге-М. Оппенгейм, Профессиональные болезни кожи, т. I, в. 1, М., 1Я25),* К г аир а Е., Der Glasblaserstar, Munchen, 1928 (лит.).С. Бродский. Н. Розенбаум.

Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Очистить обувь от соли и реагентов Как очистить ботинки от соли Очистить обувь от соли и реагентов Как очистить ботинки от соли Окисление и потемнение серебра Окисление и потемнение серебра Вязание топа крючком для начинающих из меланжевой пряжи Схемы вязания спицами из меланжевой пряжи Вязание топа крючком для начинающих из меланжевой пряжи Схемы вязания спицами из меланжевой пряжи