В чем состоит теорема кинетической энергии. Конспект урока "Кинетическая энергия

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Под элементарной работой dА, совершаемой силой на элементарном перемещении , называют величину, равную скалярному произведению на

где угол a - угол между векторами силы и перемещением (рис.1.22,а);

Модуль вектора элементарного перемещения или элементарный путь пройденной точкой приложения силы.

Работа силы на конечном перемещении равна сумме элементарных работ:

. (1.61)

Если сила постоянна ( =const), то ее работа на прямолинейном участке длины l запишется следующим образом:

. (1.62)

Работа силы может быть положительной, отрицательной или равной нулю. Так, работы постоянных сил, приложенных к телу (рис.1.22б) на горизонтальном участке пути l, равны:

Чтобы ввести понятие о кинетической энергии W k тела, запишем элементарную работу dA силы в другом виде (см. 1.2.2):

Тогда для работы силы , переводящей тело из состояния 1 (скорость тела ) в состояние 2 (скорость тела ) можно записать:

Из полученной формулы следует, что работа силы равна разности двух величин, определяющих начальное (скорость ) и конечное (скорость ) состояния тела. При этом условия перехода из состояния 1 в состояние 2 не оказывают влияние на записанное выражение. Поэтому можно ввести функцию состояния тела, его кинетическую энергию W к как СФВ, характеризующую способность тела совершать работу за счет изменения скорости его движения и равную

В этом выражении постоянную величину выбирают, предположив, что при нулевой скорости движения тела его кинетическая энергия равна нулю, поэтому

Кинетическая энергия тел не зависит от того, как была достигнута данная скорость u, она является функцией состояния тела, положительной величиной, зависящей от выбора системы отсчета.

Введение W к позволяет сформулировать теорему о кинетической энергии, согласно которой алгебраическая сумма работ всех сил, действующих на тело, равна приращению кинетической энергии тела:

Эта теорема широко используется для анализа взаимодействия тел не только в механике, но и в других разделах курса физики, таких как электростатика, постоянный ток, электромагнетизм, колебания и волны и т.д.

1.4.2. Кинетическая энергия вращающегося а.т.т.

Возьмем а.т.т., вращающееся вокруг неподвижной оси с угловой скоростью (рис.1.16,б). Представим тело в виде совокупности м.т. массы dm , тогда для кинетической энергии тела можно записать:

Итак, кинетическая энергия а.т.т. вращающегося относительно неподвижной оси вращения, определяется по формуле



Если тело одновременно участвует в поступательном (плоском) и вращательном движениях (например, движение цилиндра без скольжения по плоскости, рис.1.23,а), то его кинетическую энергию можно получить

Рис.1.23

как сумму кинетической энергии поступательного движения тела вместе с осью вращения, проходящей через его центр масс (точка О ), со скоростью и вращательного движения тела относительно этой оси с угловой скоростью

. (1.67)

Для сплошного (I 1 =1/2mR 2 ) и тонкостенного (I 2 =mR 2 ) цилиндров одинаковой массы m и радиуса R кинетические энергии запишутся таким образом:

.

Полученные формулы для кинетической энергии цилиндров позволяют объяснить опыт по различию времени их скатывания с наклонной плоскости высотой h и длиной l (рис.1.23,б). Так, согласно закону сохранения энергии (силой трения при движении цилиндров практически можно пренебречь) получим

,

где обозначают скорости сплошного и полого цилиндров у основания наклонной плоскости.

При скатывании цилиндров центр их масс движется равноускоренно без начальной скорости и поэтому согласно формуле (1.13) можно записать:

,

т.е. на скатывание полого цилиндра требуется большее время, чем для сплошного цилиндра.

Качественно это можно объяснить тем, что полый цилиндр является более инертным, чем сплошной (для него момент инерции относительно оси вращения больше), и поэтому он медленнее изменяет свою скорость и поэтому тратит больше времени на скатывание с наклонной плоскости.

Как видно из рис.1.23,а, модули скоростей точек на поверхности цилиндра будут разными (u В =0, , u А =2u) в связи с тем, что эти точки участвуют одновременно и в поступательном и в вращательном движениях со скоростями и , причем для каждой точки направлена по касательной к поверхности цилиндра и равна по модулю u ( ).

Отметим, что движение цилиндра можно рассматривать и как ряд последовательных вращений вокруг мгновенной оси, проходящей через точку С (рис.1.23,а) с угловой скоростью w. Причем и в этом случае кинетическая энергия тела также определяется формулой (1.67).

Просмотр: эта статья прочитана 48440 раз

Pdf Выберите язык... Русский Украинский Английский

Краткий обзор

Полностью материал скачивается выше, предварительно выбрав язык


Два случая преобразования механического движения материальной точки или системы точек:

  1. механическое движение переносится с одной механической системы на другую в качестве механического движения;
  2. механическое движение превращается в другую форму движения материи (в форму потенциальной энергии, теплоту, электричество и т.д.).

Когда рассматривается преобразование механического движения без перехода его в другую форму движения, мерой механического движения является вектор количества движения материальной точки или механической системы. Мерой действия силы в этом случае является вектор импульса силы.

Когда механическое движение превращается в другую форму движения материи, в качестве меры механического движения выступает кинетическая энергия материальной точки или механической системы. Мерой действия силы при превращении механического движения в другую форму движения является работа силы

Кинетическая энергия

Кинетическая энергия это способность тела преодолевать препятствование во время движения.

Кинетическая энергия материальной точки

Кинетической энергией материальной точки называется скалярная величина, которая равняется половине произведения массы точки на квадрат ее скорости.

Кинетическая энергия:

  • характеризует и поступательное, и вращательное движения;
  • не зависит от направления движения точек системы и не характеризует изменение этих направлений;
  • характеризует действие и внутренних, и внешних сил.

Кинетическая энергия механической системы

Кинетическая энергия системы равняется сумме кинетических энергий тел системы. Кинетическая энергия зависит от вида движения тел системы.

Определение кинетической энергии твердого тела при разных видах движения движениях.

Кинетическая энергия поступательного движения
При поступательном движении кинетическая энергия тела равна Т =m V 2 /2.

Мерой инертности тела при поступательном движении является масса.

Кинетическая энергия вращательного движения тела

При вращательном движении тела кинетическая энергия равняется половине произведения момента инерции тела относительно оси вращения и квадрата его угловой скорости.

Мерой инертности тела при вращательном движении является момент инерции.

Кинетическая энергия тела не зависит от направления вращения тела.

Кинетическая энергия плоскопаралельного движения тела

При плоскопаралельном движении тела кинетическая энергия равна

Работа силы

Работа силы характеризует действие силы на тело при некотором перемещении и определяет изменение модуля скорости подвижной точки.

Элементарная работа силы

Элементарная работа силы определяется как скалярная величина, равная произведению проекции силы на касательную к траектории, направленную в направлении движения точки, и бесконечно малого перемещения точки, направленного вдоль этой касательной.

Работа силы на конечном перемещении

Работа силы на конечном перемещении равна сумме ее работ на элементарных участках.

Работа силы на конечном перемещении М 1 М 0 равняется интегралу вдоль этого перемещения от элементарной работы.

Работа силы на перемещении М 1 М 2 изображается площадью фигуры, ограниченной осью абсцисс, кривой и ординатами, соответствующими точкам М 1 и М 0 .

Единица измерения работы силы и кинетической энергии в системе СИ 1 (Дж).

Теоремы о работе силы

Теорема 1 . Работа равнодействующей силы на некотором перемещении равна алгебраической сумме работ составляющих сил на том же перемещении.

Теорема 2. Работа постоянной силы на результирующем перемещении равна алгебраической сумме работ этой силы на составляющих перемещениях.

Мощность

Мощность - это величина, которая определяет работу силы за единицу времени.

Единицей измерения мощности есть 1Вт = 1 Дж/с.

Случаи определения работы сил

Работа внутренних сил

Сумма работ внутренних сил твердого тела на любом его перемещении равна нулю.

Работа силы тяжести

Работа силы упругости

Работа силы трения

Работа сил, приложенных к вращающемуся телу

Элементарная работа сил, приложенных к твердому телу, вращающемуся вокруг неподвижной оси, равна произведению главного момента внешних сил относительно оси вращения на приращение угла поворота.

Сопротивление качению

В зоне контакта неподвижого цилиндра и плоскости возникает местная деформация контактного сжатия, напряжение распределяются по эллиптическому закону и линия действия равнодействующей N этих напряжений совпадает с линией действия силы нагрузки на цилиндр Q. При перекатывании цилиндра распределение нагрузки становится несимметричным с максимумом, смещенным в сторону движения. Равнодействующая N смещается на величину k - плечо силы трения качения, которая еще назвается коэффициентом трения качения и имеет размерность длины (см)

Теорема об изменении кинетической энергии материальной точки

Изменение кинетической энергии материальной точки на некотором ее перемещении равняется алгебраической сумме робот всех действующих на точку сил на том же перемещении.

Теорема об изменении кинетической энергии механической системы

Изменение кинетической энергии механической системы на некотором перемещении равняется алгебраической сумме робот внутренних и внешних сил, действующих на материальные точки системы на том же перемещении.

Теорема об изменении кинетической энергии твердого тела

Изменение кинетической энергии твердого тела (неизменной системы) на некотором перемещении равняется сумме робот внешних сил, действующих на точки системы на том же перемещении.

КПД

Силы, действующие в механизмах

Силы и пары сил (моменты), которые приложены к механизму или машине, можно разделить на группы:

1.Движущие силы и моменты, совершающие положительную работу (приложенные к ведущим звеньям, например, давление газа на поршень в ДВС).

2. Силы и моменты сопротивления, совершающие отрицательную работу:

  • полезного сопротивления (совершают требуемую от машины работу и приложены к ведомым звеньям, например сопротивление поднимаемого машиной груза),
  • силы сопротивления (например, силы трения, сопротивление воздуха и т.п.).

3. Силы тяжести и силы упругости пружин (как положительная, так и отрицательная работа, при этом работа за полный цикл равна нулю).

4. Силы и моменты, приложенные к корпусу или стойке извне (реакция фундамента и т.п.), которые не совершают работу.

5. Силы взаимодействия между звеньями, действующие в кинематических парах.

6. Силы инерции звеньев, обусловленные массой и движением звеньев с ускорением, могут осуществлять положительную, отрицательную работу и не совершать работы.

Работа сил в механизмах

При установившемся режиме работы машины ее кинетическая энергия не изменяется и сумма работ приложенных к ней движущих сил и сил сопротивления равна нулю.

Работа, затрачиваемая на приведение машины в движение, расходуется на преодоление полезных и вредных сопротивлений.

КПД механизмов

Механический коэффициент полезного действия при установившемся движении равен отношению полезной работы машины к работе, затраченной на приведение машины в движение:

Элементы машины могут соединяться последовательно, параллельно и смешанно.

КПД при последовательном соединении

При последовательном соединении механизмов общий КПД меньше с наименьшего КПД отдельного механизма.

КПД при параллельном соединении

При параллельном соединении механизмов общий КПД больше наименьшего и меньше наибольшего КПД отдельного механизма.

Формат: pdf

Язык: русский, украинский

Пример расчета прямозубой цилиндрической передачи
Пример расчета прямозубой цилиндрической передачи. Выполнен выбор материала, расчет допускаемых напряжений, расчет на контактную и изгибную прочность.


Пример решения задачи на изгиб балки
В примере построены эпюры поперечных сил и изгибающих моментов, найдено опасное сечение и подобран двутавр. В задаче проанализировано построение эпюр с помощью дифференциальных зависимостей, провелен сравнительный анализ различных поперечных сечений балки.


Пример решения задачи на кручение вала
Задача состоит в проверке прочности стального вала при заданном диаметре, материале и допускаемых напряжениях. В ходе решения строятся эпюры крутящих моментов, касательных напряжений и углов закручивания. Собственный вес вала не учитывается


Пример решения задачи на растяжение-сжатие стержня
Задача состоит в проверке прочности стального стержня при заданных допускаемых напряжениях. В ходе решения строятся эпюры продольных сил, нормальных напряжений и перемещений. Собственный вес стержня не учитывается


Применение теоремы о сохранении кинетической энергии
Пример решения задачи на применение теоремы о сохранение кинетической энергии механической системы

Начнем с определения. Работа А силы F при перемещении х тела, к которому она приложена, определяется как скалярное произведение векторов F и х .

А= F ·х= Fxcosα . (2.9.1)

Где α – угол между направлениями силы и перемещения.

Сейчас нам пригодится выражение (1.6 а), которое получено при равноускоренном движении. Но вывод мы сделаем универсальный, который и называется теоремой о кинетической энергии. Итак, перепишем равенство (1.6 а)

a · x =(V 2 –V 0 2)/2.

Умножим обе части равенства на массу частицы, получим

Fx =m(V 2 –V 0 2)/2.

Окончательно

А= m V 2 /2 – m V 0 2 /2. (2.9.1)

Величину Е = m V 2 /2 называют кинетической энергией частицы.

Вы привыкли, что в геометрии теоремы имеют свою устную формулировку. Чтобы не отстать от этой традиции, представим теорему о кинетической энергии в виде текста.

Изменение кинетической энергии тела равно работе всех сил, действующих на него.

Данная теорема носит универсальный характер, т. е. справедлива для любого вида движения. Однако точное её доказательство связано с применением интегрального исчисления. Поэтому мы его опускаем.

Рассмотрим пример движения тела в поле тяжести. Работа силы тяжести не зависит от вида траектории, соединяющей начальную и конечную точки, а определяется только разностью высот в начальном и конечном положениях:

А=mg(h 1 –h 2). (2.9.2)

Примем какую-нибудь точку поля тяжести за начало отсчета и будем рассматривать работу, совершаемую силой тяжести при перемещении частицы в эту точку из другой произвольной точки Р , находящейся на высоте h . Эта работа равна mgh и называется потенциальной энергией Е п частицы в точке Р :

Е п = mgh (2.9.3)

Теперь преобразуем равенство (2.9.1), механическая теорема о кинетической энергии примет вид

А= m V 2 /2 – m V 0 2 /2= Е п1 – Е п2 . (2.9.4)

m V 2 /2+ Е п2 = m V 0 2 /2+ Е п1 .

В этом равенстве в левой части стоит сумма кинетической и потенциальной энергии в конечной точке траектории, а в правой – в начальной.

Эту сумму называют полной механической энергией. Будем обозначать ее Е .

Е = Е к + Е п.

Мы пришли к закону сохранения полной энергии: в замкнутой системе полная энергия сохраняется.

Однако следует сделать одно замечание. Пока мы рассматривали пример так называемых консервативных сил . Эти силы зависят только от положения в пространстве. А работа, совершаемая такими силами при перемещении тела из одного положения в другое, зависит только от этих двух положений и не зависит от пути. Работа, совершаемая консервативной силой, является механически обратимой, т. е. меняет свой знак при возврате тела в исходное положение. Сила тяжести является консервативной силой. В дальнейшем мы познакомимся с другими видами консервативных сил, например, с силой электростатического взаимодействия.

Но в природе бывают и неконсервативные силы . Например, сила трения скольжения. Чем больше путь частицы, тем большую работу совершает сила трения скольжения, действующая на эту частицу. Кроме того, работа силы трения скольжения всегда отрицательна, т. е. «вернуть» энергию такая сила не может.

Для замкнутых систем полная энергия, конечно, сохраняется. Но для большинства задач механики более важным является частный случай закона сохранения энергии, а именно закон сохранения полной механической энергии. Вот его формулировка.

Если на тело действуют только консервативные силы, то его полная механическая энергия, определяемая как сумма кинетической и потенциальной энергий, сохраняется .

В дальнейшем нам понадобятся ещё два важных равенства. Как всегда, вывод заменим простой демонстрацией частного случая поля тяжести. Но вид этих равенств будет справедлив для любых консервативных сил.

Приведем равенство (2.9.4) к виду

А= F x = Е п1 – Е п2 = –( Е п.кон – Е п.нач)= – ∆U.

Здесь мы рассмотрели работу А при перемещении тела на расстояние ∆x . Величину ∆U, равную разности конечной и начальной потенциальной энергии, называют изменением потенциальной энергии. А полученное равенство заслуживает отдельной строчки и специального номера. Поспешим его присвоить ему:

А= – ∆U (2.9.5)

Отсюда же вытекает математическая связь между силой и потенциальной энергией:

F = – ∆U/∆x (2.9.6)

В общем случае, не связанном с полем тяжести, равенство (2.9.6) представляет собой простейшее дифференциальное уравнение

F = – dU / dx .

Последний пример рассмотрим без доказательства. Гравитационная сила описывается законом всемирного тяготения F (r )= GmM / r 2 и является консервативной. Выражение для потенциальной энергии гравитационного поля имеет вид:

U (r )= – GmM / r .

Автор : Разберем простой случай. На тело массой m, находящееся на горизонтальной плоскости, действует в течение промежутка времени Т горизонтальная сила F . Трение отсутствует. Чему равна работа силы F ?

Студент : За время Т тело переместится на расстояние S=а Т 2 /2, где а =F /m. Следовательно, искомая работа есть А =F S=F 2 T 2 /(2m).

Автор : Все правильно, если считать, что тело покоилось до того, как на него начала действовать сила. Несколько усложним задачу. Пусть до начала действия силы тело двигалось прямолинейно и равномерно с некоторой скоростью V 0 , сонаправленной с внешней силой. Чему теперь равна работа за время Т ?

Студент : Для расчета перемещения возьму более общую формулу S= V 0 T + а Т 2 /2, для работы получаю А =F (V 0 T + а Т 2 /2). Сравнивая с предыдущим результатом, вижу, что одна и та же сила за одинаковые промежутки времени производит разную работу.

Тело массой m скользит вниз по наклонной плоскости с углом наклона α. Коэффициент трения скольжения тела о плоскость k . На тело все время действует горизонтальная сила F . Чему равна работа этой силы при перемещении тела на расстояние S?

Студент : Произведем расстановку сил и найдем их равнодействующую. На тело действует внешняя сила F, а также силы тяжести, реакции опоры и трения.

Студент : Получается, что работа А= F Scos α и всё. Меня действительно подвела привычка каждый раз искать все силы, тем более что в задаче указана масса и коэффициент трения.

Студент : Работу силы F я уже вычислил: А 1 = F S cos α. Работа силы тяжести есть А 2 =mgSsin α. Работа силы трения … отрицательна, т. к. векторы силы и перемещения противоположно направлены: А 3 = – kmgScos α. Работа силы реакции N равна нулю, т. к. сила и перемещение перпендикулярны. Правда, я не очень понимаю смысла отрицательной работы?

Автор : Это означает, что работа данной силы уменьшает кинетическую энергию тела. Кстати. Давайте обсудим движение тела, изображенного на рис.2.9.1, с точки зрения закона сохранения энергии. Для начала найдите суммарную работу всех сил.

Студент : – А = А 1 + А 2 + А 3 = FScos α+ mgSsin α– kmgScos α.

По теореме о кинетической энергии разность кинетических энергий в конечном и начальном состояниях равна совершенной над телом работе:

Е к –Е н =А .

Студент : Может быть, это были другие уравнения, не относящиеся к данной задаче?

Автор : Но все уравнения должны давать одинаковый результат. Дело в том, что потенциальная энергия содержится в скрытом виде в выражении для полной работы. Действительно, вспомните А 2 =mgSsin α=mgh, где h – высота спуска тела. Получите, теперь из теоремы о кинетической энергии выражение закона сохранения энергии.

Студент : Так как mgh=U н – U к, где U н и U к соответственно начальная и конечная потенциальные энергии тела, то имеем:

mV н 2 /2 + U н + А 1 + А 3 = mV к 2 /2+ U к.

Студент : Это, по-моему, легко. Работа силы трения по модулю как раз и равна количеству теплоты Q . Поэтому Q = kmgScos α.

Студент : mV н 2 /2 + U н + А 1 – Q = mV к 2 /2+ U к.

Автор : Теперь несколько обобщим определение работы. Дело в том, что соотношение (2.9.1) верно только для случая действия постоянной силы. Хотя есть немало случаев, когда сила сама зависит от перемещения частицы. Приведите пример.

Студент : Первое, что приходит в голову, это растяжение пружины. По мере перемещения незакрепленного конца пружины сила, все увеличивается. Второй пример связан с маятником, который, как мы знаем, сложнее удержать при больших отклонениях от положения равновесия.

Автор : Хорошо. Давайте остановимся на примере с пружиной. Сила упругости идеальной пружины описывается законом Гука, в соответствии с которым при сжатии (или растяжении) пружины на величину х возникает сила, противоположно направленная смещению, линейно зависящая от х . Запишем закон Гука в виде равенства:

F = – kx (2.9.2)

Здесь k – коэффициент жесткости пружины, x – величина деформации пружины. Изобразите график зависимости F (x ).

Студент : Мой чертеж представлен на рисунке.

Рис.2.9.2

Левая половина графика соответствует сжатию пружины, а правая – растяжению.

Автор : Теперь вычислим работу силы F при перемещении от х =0 до х = S. Для этого существует общее правило. Если нам известна общая зависимость силы от смещения, то работа на участке от х 1 до х 2 есть площадь под кривой F (x ) на этом отрезке.

Студент : Значит, работа силы упругости при перемещении тела от х =0 до х =S отрицательна, а модуль её равен площади прямоугольного треугольника: А = kS 2 /2.

А = kх 2 /2. (2.9.3)

Эта работа превращается в потенциальную энергию деформированной пружины.

История.

Резерфорд демонстрировал слушателям распад радия. Экран то светился, то темнел.

– Теперь вы видите, сказал Резерфорд, что ничего не видно. А почему ничего не видно, вы сейчас увидите.

Вопросы и задания

1. Перечислите ситуации, встречающиеся в повседневной жизни, в которых участвуют неконсервативные силы.

2. Вы медленно поднимаете книгу со стола на высокую полку. Перечислите силы, действующие на книгу, и определите, какие из них являются консервативными, а какие нет.

3. Результирующая сила, действующая на частицу, консервативна и увеличивает её кинетическую энергию на 300 Дж . Каково при этом изменение а) потенциальной энергии частицы, б) её полной энергии?

4. Имеет ли физический смысл следующее утверждение: использование шестов из гибкого пластика в прыжках в высоту привело к росту результатов благодаря тому, что большая его гибкость дает дополнительную упругую энергию, преобразуемую в потенциальную энергию поля тяжести?

5. Имеется наклонная плоскость, один конец которой поднят на высоту Н . Тело массой М скатывается (без начальной скорости) из верхней точки. Зависит ли скорость этого тела у основания наклонной плоскости от угла, который она составляет с горизонтом, если а) трение отсутствует, б) трение имеется?

6. Почему мы все же утомляемся, когда сначала взбираемся на гору, а потом спускаемся с нее? Ведь полная работа в поле тяжести равна нулю.

7. Этот пример ещё жестче. Представьте, что Вы держите гантелю на вытянутой руке. Не бойтесь, она не очень тяжелая. Но все же рука устает. А механической работы никакой нет, т. к. нет движения. Куда расходуется энергия Ваших мышц?

8. Пружина массой m покоится в вертикальном положении на столе. Сможет ли пружина, подпрыгнув, оторваться от стола, после того как Вы сожмете её, надавив сверху, а затем отпустите? Объясните свой ответ, используя закон сохранения энергии.

9. Что происходит с потенциальной энергией, которую имела вода в верхней части водопада, когда вода достигнет его основания? А что случится с кинетической и полной энергией?

10. Опытные туристы предпочитают перешагивать через упавшее бревно, а не, наступив на него, спрыгивать с противоположной стороны. Объясните явление.

11. Два человека находятся на разных платформах, которые движутся относительно друг друга со скоростью V. Они наблюдают за бревном, которое тянут по шероховатой горизонтальной поверхности. Совпадают ли полученные этими людьми значения: а) кинетической энергии бревна; б) полной работы, совершаемой над телом; в) механической энергии, перешедшей в тепловую из-за наличия трения? Не противоречит ли ответ на вопрос в) ответам на вопросы а) и б)?

12. Откуда берется кинетическая энергия автомобиля при равномерном его ускорении из состояния покоя? Как связать возрастание кинетической энергии с наличием силы трения между шинами и шоссе?

13. Зимой Земля приближается к Солнцу на кратчайшее расстояние. Когда потенциальная энергия Земли наибольшая?

14 Может ли полная механическая энергия быть отрицательной? Приведите примеры.

15. В какой точке величина сила наибольшая? Для каждой из обозначенных цифрами точек укажите, в каком направлении действует сила. Какая точка соответствует положению равновесия?

Задачи

16. Пуля пробивает закрепленную доску при минимальной скорости 200 м/с . С какой скоростью должна лететь пуля для того, чтобы пробить эту доску, подвешенную на длинной нити? Масса пули 15г , масса доски 90г , пуля попадает точно в центр доски перпендикулярно её поверхности.

17. Деревянный шар массой М =1 кг висит на шнуре так, что расстояние от точки подвеса шнура до центра шара равно L = 1 м . В шар попадает горизонтально летящая со скоростью V 1 =400 м/с пуля массой m = 10 г , которая пробивает шар точно по диаметру и вылетает из него со скоростью V 2 =230 м/с . Определите угол максимального отклонения подвеса от вертикали. Сопротивлением воздуха и временем пробивания шара пулей пренебречь.

18. На плоскости, наклоненной к горизонту под углом α, лежат два тела массой m . Коэффициент трения между телами и плоскостью k >tg α. Телам придают одинаковые встречные скорости V . При каком максимальном начальном расстоянии L между телами они столкнутся?

19. Тележка скатывается по гладким рельсам, образующим вертикальную петлю радиуса R . С какой минимальной высоты H min должна скатиться тележка для того, чтобы она не покинула рельсов по всей их длине? Каково будет движение тележки, если она скатывается с высоты h , меньшей H min ?

20. Определите силу, действующую на вертикальную стенку со стороны падающей гантели, в тот момент, когда ось гантели составляет угол  с горизонтом. Гантель начинает свое движение из вертикального положения без начальной скорости. Масса каждого шарика гантели m.

21. На нити длиной 2h подвешен грузик массой m . На расстоянии h под точкой подвеса вбит гвоздь. Нить отклонили из положения равновесия на угол /2 и отпустили. На какую максимальную высоту поднимется грузик после прохождения положения равновесия?

22. Подставка массой M с полусферической выемкой радиуса R стоит на гладкой горизонтальной плоскости. Малое тело массой m кладут на край выемки и отпускают. Найти скорости тела и подставки, силу, действующую на тело в момент прохождения нижней точки

23. Груз массой m , подвешенный на пружине жесткости k , удерживается подставкой так, что пружина находится в недеформированном состоянии. Подставку внезапно убирают. Найти максимальное удлинение пружины и максимальную скорость груза.

24. От груза, подвешенного на пружине жесткости k , отрывается часть массой m . На какую высоту поднимется после этого оставшаяся часть груза?

25. C какой силой надо надавить на верхний груз массой m , чтобы нижний груз массой M , соединенный с верхним пружиной жесткости k , оторвался от пола после прекращения действия силы?

26. На горизонтальной плоскости лежат два тела массами m 1 и m 2 , соединённых недеформированной пружиной. Найти, какую наименьшую постоянную силу нужно приложить к левому телу, чтобы сдвинулось правое. Коэффициент трения тел о плоскость .

работа равнодействующей сил, приложенных к телу, равна изменению кинетической энергии тела.

Так как изменение кинетической энергии равно работе силы (3), кинетическая энергия тела выражается в тех же единицах, что и работа, т. е. в джоулях.

Если начальная скорость движения тела массой m равна нулю и тело увеличивает свою скорость до значения υ , то работа силы равна конечному значению кинетической энергии тела:

A =Ek 2−Ek 1=m υ 22−0=m υ 22 .

42) Потенциальные поля

Потенциальное поле

консервативное поле, векторное поле, циркуляция которого вдоль любой замкнутой траектории равна нулю. Если П. п. - силовое поле, то это означает равенство нулю работы сил поля вдоль замкнутой траектории. Для П. п. а (М ) существует такая однозначная функция u (М )(Потенциал поля), что а = gradu (см. Градиент). Если П. п. задано в односвязной области Ω, то потенциал этого поля может быть найден по формуле

в которой AM - любая гладкая кривая, соединяющая фиксированную точку А из Ω с точкой М, t - единичный вектор касательной кривой AM и / - длина дуги AM, отсчитываемая от точки А. Если а (М ) - П. п., то rot a = 0 (см. Вихрь векторного поля). Обратно, если rot а = 0 и поле задано в односвязной области и дифференцируемо, то а (М ) - П. п. Потенциальными являются, например, электростатическое поле, поле тяготения, поле скоростей при безвихревом движении.

43) Потенциальная энергия

Потенциальная энергия - скалярная физическая величина, характеризующая способность некого тела (или материальной точки) совершать работу за счет его нахождения в поле действия сил. Другое определение: потенциальная энергия - это функция координат, являющаяся слагаемым в лагранжианесистемы, и описывающая взаимодействие элементов системы. Термин «потенциальная энергия» был введен в XIX веке шотландским инженером и физиком Уильямом Ренкином.

Единицей измерения энергии в СИ является Джоуль.

Потенциальная энергия принимается равной нулю для некоторой конфигурации тел в пространстве, выбор которой определяется удобством дальнейших вычислений. Процесс выбора данной конфигурации называетсянормировкой потенциальной энергии .

Корректное определение потенциальной энергии может быть дано только в поле сил, работа которых зависит только от начального и конечного положения тела, но не от траектории его перемещения. Такие силы называются консервативными.

Также потенциальная энергия является характеристикой взаимодействия нескольких тел или тела и поля.

Любая физическая система стремится к состоянию с наименьшей потенциальной энергией.

Потенциальная энергия упругой деформации характеризует взаимодействие между собой частей тела.

Потенциальная энергия в поле тяготения Земли вблизи поверхности приближённо выражается формулой:

где E p - потенциальная энергия тела, m - масса тела, g - ускорение свободного падения, h - высота положения центра масс тела над произвольно выбранным нулевым уровнем.

44) Связь силы и потенциальной энергии

Каждой точке потенциального поля соответствует, с одной стороны, некоторое значение вектора силы , действующей на тело, и, с другой стороны, некоторое значение потенциальной энергии . Следовательно, между силой и потенциальной энергией должна существовать определенная связь.

Для установления этой связи вычислим элементарную работу , совершаемую силами поля при малом перемещении тела, происходящем вдоль произвольно выбранного направления в пространстве, которое обозначим буквой . Эта работа равна

где - проекция силы на направление .

Поскольку в данном случае работа совершается за счет запаса потенциальной энергии , она равна убыли потенциальной энергии на отрезке оси :

Из двух последних выражений получаем

Последнее выражение дает среднее значение на отрезке . Чтобы

получить значение в точке нужно произвести предельный переход:

в математике вектор ,

где а - скалярная функция х, у, z, называется градиентом этого скаляра обозначается символом . Следовательно сила равна градиенту потенциальной энергии, взятого с обратным знаком

45) Закон сохранения механической энергии



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Как составить базовый гардероб: меньше, да лучше Как составить базовый гардероб: меньше, да лучше Конспект урока Конспект урока "Кинетическая энергия Шары оригами из бумаги на новый год Шары оригами из бумаги на новый год