Центры регулирующие метаболизм организма. Обмен веществ и энергии

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

78. Основные регуляторные системы организма и механизмы регуляции метаболизма и функций.

В механизмах регуляции, обеспечивающих гомеостаз, а также время, направление и величину изменений, можно выделить три уровня. Первый уровень- внутриклеточные механизмы регуляции. Сигналами для изменения состояния клетки служат вещества, образующиеся в самой клетке или поступающие в нее извне. Эти вещества могут действовать тремя способами: а) изменять активность ферментов путем ингибирования или активации; б) изменять количество ферментов и других белков путем индукции или репрессии их синтеза или путем изменения ско­рости их распада; в) изменять скорость трансмембранного переноса веществ, взаимодействуя с мембраной.

Внутриклеточные механизмы регуляции действуют как у одноклеточных организмов, так и в клетках многоклеточных организмов. Но у сложно устроенных многоклеточных организмов с дифференцированными органами, выполняющими специальные функции, возникает необходимость межорганной координации обмена веществ. Например, интенсивная работа мышц требует включения процессов мобилизации гликогена в печени или мобилизации жиров в жировой ткани. Межорганная координация обеспечивается передачей сигналов двумя путями: через кровь с помощью гормонов (эндокринная система) и через нервную систему. Эндокринная система - второй уровень регуляции. Она представлена железами (иногда отдельными клетка ми), синтезирующими гормоны---химические сигналы. Гормоны освобождаются в кровь в ответ на специфический стимул. "Этим стимулом может быть нервный импульс или изменение концентрации определенного вещества в "крови, протекающей через эндокринную железу "(например, снижение концентрации глюкозы). Гормон транспортируется с. кровью и, достигая клеток-мишеней, модифицирует в них обмен веществ через внутриклеточные механизмы, т. е. путем изменения активности или количества ферментов. В результате изменения обмена веществ устраняется стимул, вызвавший освобождение гормона (например, повышается концентрация глюкозы в крови). Выполнивший свою функцию гормон разрушается специальными ферментами. Третий уровень регуляции -- нервная система с рецепторами сигналов как внешний среды, так и внутренней. Сигналы трансформируются в волну деполяризации нервного волокна (нервный "импульс), который в синапсе с клеткой-эффектором вызывает освобождение медиатора -- химического сигнала. Медиатор через внутриклеточные механизмы регуляции вызывает изменение обмена веществ. Клетками-эффекторами могут быть и некоторые эндокринные клетки, отвечающие на нервный импульс синтезом и выделением гормона. Все три уровня регуляции теснейшим образом взаимосвязаны и функционируют как единая

79. Гормоны. Классификация, их место в системе регуляции метаболизма. Механизм передачи гормонального сигнала в клетку.

1. Сложные белки - гликопротеины; к ним относятся: фолликулостимулирующий, лютеинизирующий, тиреотропный гормоны и др. 2. Простые белки: пролактин, соматотропный гормон (соматотропин, гормон роста), инсулин и др. 3. Пептиды: кортикотропин (АКТГ), глюкагон, кальцитонин, соматостатин, вазопрессин, окситоцин и др. 4. Производные аминокислот: катехоламины, тиреоидные гормоны, мелатонин и др. 5. Стероидные соединения и производные жирных кислот (простагландины). Стероиды составляют большую группу гормональных веществ; к ним относятся гормоны

По биологич.ф-ям: 1-регулирующие обмен углеводов, жиров и АК(инсулин, глюкагон,адреналин, глбкокортикостероиды(кортизол). 2-регулирующие водно-солевой обмен(минералокортикостероиды,алдостерон,вазопрессин АДГ). 3-рег.обмен Са и фосфатов(паратгормон,кальцитонин, кальцитриол). 4-регюобмен в-в,связанный с репродуктивной ф-ей(эстрадиол, прогестерон, тестостерон). 5-рег.ф-ии эндокринных желез(тропные гормоны-кортикотропин, тиротропин,гонадотропин)

По механизму передачи сигнала в клетку-мишень гормоны можно разделить на две группы. Первую группу составляют пептидные гормоны и адреналин. Их рецепторы расположены на наружной поверхности плазматической мембраны, и гормон внутрь клетки не проникает. Эти гормоны (первые вестники сигнала) передают сигнал посредст вом второго вестника, роль которого выполняет цАМФ. После присоединения гормона к рецептору следует цепь событий, из меняющих метаболизм клетки (например, включается каскадный механизм мобилизации гликогена и т. п.). Другую группу составляют стероидные гормоны и тироксин. Рецепторы этих гормонов находятся в цитозоле клетки. Гормон проникает из крови в клетку, соединяется с рецептором и вместе с ним транспортируется в ядро. Стероидные гормоны и тироксин изменяют обмен веществ,

влияя на транскрипцию, а следователь но, и на синтез белков.

80. Регуляция обмена аминокислот, жиров и углеводов. Изменение концентрации гор­монов в зависимости от ритма питания. Изменение гормонального статуса и метаболизма при голодании и действии других экстремальных факторов.

Регуляция обмена амин.к-т., жиров, углеводов. метаболические пути углеводов, жиров и аминокислот часто переплетаются. Взаимосвязь обмена этих групп веществ проявля­ется в наличии общего для них пути катаболизма и в возможности их взаимопревращений. Возможностью взаимопревращений объясняется частичная взаимозаменяемость угле­водов, липидов и белков (аминокис­лот) в питании. С этим же связана неэффективность попыток лечения ожирения без жировой диетой. Сле­дует отметить необратимость превращения пирувата и аминокислот в ацетил-КоА. Это означает, что апетил-КоА в орга-

низме человека не может быть ис­пользован для синтеза глюкозы, глицерина, аминокислот. Жирные кислоты при окислении пре вращаются в ацетил-КоА, следовательно, ис­пользование жирных кислот для синтеза углеводов тоже невозможно. Значительная масса углеводов, жиров и аминокислот расходуется в каче­стве источников энергии. Особенно это относится к углеводам: на их долю приходится половина или больше всего количества потребляемой пищи, а содержание углеводов в организме составляет лишь "/2 часть от всех других компонентов (вода в расчет не принимается). Основными энерго­носителями, которые через кровоток распределяются по органам, служат глюкоза, жиры липопротеинов, жирные кислоты и кетоновые тела.. Глав­ными их продуцентами являются печень и жировая ткань; потребляют эти энергоносители все органы, но в количественном отношении первое место принадлежит мышечной ткани вследствие ее значительной массы. В зависимости от состава пищи, ритма питания, физиологи ческой активно­сти происходит изменение скоростей превращений углеводов, жиров, аминокислот и переключение с ис­пользования одного из них на ис­пользование другого. Эти пере­стройки метаболизма регулируются гормонами

Ацетон не используется в организме и выводится главным образом с выдыхаемым воздухом и через кожу: уже на третий-четвертый день ощуща­ется запах ацетона изо рта и от кожи голодающего человека. В этой фазе энергетические потребности мышц и большинства других органов удовлетворяются за счет жирных кислот и кетоновых тел. Поскольку концентрация инсулина в крови при голодании очень низка, глюкоза в мышечные клетки не проникает. Потребителями глюкозы в этих усло­виях становятся только инсулиноне­зависимые клетки и прежде всего клетки мозга. Однако и в мозге в этом периоде часть энергетических потребностей обеспечивается кетоно­выми телами. Глюконеогенез продол­жается за счет распада тканевых белков. Интенсивность обмена ве­ществ в целом снижена: через неделю голодания потребление кислорода уменьшается примерно на 40%.

Третья фаза продолжается несколько недель. Скорость распада белков стабилизируется на уровне примерно 20 г в сут­ки; при распаде такого количества белков образуется и выводит­ся около 5 г мочевины в сутки (при обычном питании 25-30 г). Азотистый баланс во все фазы голодания отрицательный, по­скольку поступление азота равно нулю. Соответственно снижению скорости распада белков уменьшается и скорость глюконеоге­неза. В этой фазе и для мозга основным источником энергии становятся кетоновые тела. Если в этой фазе ввести аланин или другие гликогенные аминокислоты, немедленно повышается кон­центрация глюкозы в крови и снижается концентрация

81. Инсулин. Строение, образование, функции, механизм действия, инактивация. Из­ме­нения концентрации инсулина в зависимости от ритма питания.

биосинтез инсулина осуществляется в β-клетках панкреатических островков из своего предшественника проинсулина. Проинсулин лишен биологической, т.е. гормональной, активности . Проинсулин превращается в инсулин путем частичного протеолиза.

Синтез и секреция инсулина регулируются глюкозой. Концент­рация инсулина в крови человека в постабсорбтивном состоянии равна 1,3-10 моль/л. И после приема пищи или раствора саха­розы концентрация глюкозы в крови повышается, что приводит к увеличению концентрации инсулина.

Инсулин увеличивает проницаемость плазматической мембра­ны для глюкозы и некоторых аминокислот. Многие клетки нуж­даются в инсулине для переноса глюкозы через мембрану внутрь клетки; наиболее важным исключением являются клетки мозга. Независимо от влияния на проницаемость инсулин стимулирует синтез гликогена в печени и мыцщах, синтез жиров в печени и жировой ткани, синтез белков в печени, мышцах и других орга­нах. Все эти изменения направлены на ускоренное использование глюкозы, что приводит к снижению концентрации глюкозы в крови. Концентрация аминокислот также снижается (вследствие стимуляции синтеза белков), а концентрация липопротеинов увеличивается (вследствие стимуляции синтеза жиров в печени). Главные органы-мишени для инсулина - печень, мышцы и жи­ровая ткань. До сих пор неизвестны первичные пункты действия инсулина. Для многочисленных изменений обмена, наблюдаемых при введении инсулина, не удается установить причинно-след­ственные отношения.

При низкой концентрации глюкозы инсулин перестает выде­ляться в кровь, а уже имеющийся разрушается главным образом в печени - при однократном прохождении крови через печень разрушается около 80% инсулина

82. Сахарный диабет. Важнейшие изменения гормонального статуса и метаболизма при диабете. Биохимические механизмы формирования симптомов болезни и развития диабетической комы.

Сахарный диабет - одна из самых распространенных болез­ней: в мире насчитывается около 30 млн. больных диабетом. В основе болезни - нарушение регуляции обмена инсулином. При некоторых формах диабета снижен синтез инсулина, и его концентрация в крови в несколько раз меньше, чем в норме. Такие формы поддаются лечению инсулином: это так называемый инсулинозависимый диабет, или диабет 1 типа. Есть формы, ког­да содержание -инсулина в крови нормально - инсулинонезависимьш диабет, или диабет II типа", очевидно, в этих случаях имеются нарушения не синтеза инсулина, а других звеньев инсулиновой регуляции.

Все формы проявляются как недостаточность инсулина. Рассмотрим основные симптомы диабета и биохимические ме­ханизмы их возникновения.

    Гиперглюкоземия и глюкозурия. Вследствие недостаточности инсулина ослаблены все процессы использования глюкозы тканями. Глюкоза, всасывающаяся из кишечника, накапливается в крови в больших концентрациях и надолго задерживается в ней. Адреналин, кортизол, глюкагон являются антагонистами ин­сулина в отношении влияния на концентрацию глюкозы в крови. Эти гормоны при диабете продолжают действовать и усугубляют гиперглюкоземию.

2Концентрация глюкозы в крови после приема пищи превышает величины, характерные для нормальной алиментарной гиперглюкоземии (см. рис. 134), и может достигать 500 мг/дл. Гиперглюкоземия сохраняется и в постабсорбтивном состоянии. Самые легкие формы диабета проявляются гиперглюкоземией лишь после приема пищи, т. е. снижением толерант­ности к глюкозе (обнаруживается методом сахарной нагрузки). Это так называемый скрытый диабет.

Когда концентрация глюкозы в крови превышает почечный по­рог (180 мг/дл), глюкоза начинает выделяться с мочой (глюкозурия). В норме концентрация глюкозы в моче 10-20 мг/дл; при диабете она увеличивается в десятки раз. В норме за сутки с мо­чой выводится меньше 0,5 г глюкозы; при диабете может вы­водиться больше 100 г. Именно глюкозурия послужила основа­нием для названия болезни - diabetes mellitus (от лат. diabe­tes - прохожу через, rnelle - мед). Название возникло в те вре­мена, когда врачи, анализируя мочу, пробовали ее на вкус.

2. Кетонемия и кетонурия. Вследствие недостаточности инсу­лина уменьшается отношение инсулин/глюкагон, т. е. имеется от­носительная избыточность глюкагона. По этой причине печень постоянно функционирует в режиме, который у здоровых людей характерен для постабсорбтивного состояния, т. е. интенсивно окисляет жирные кислоты и продуцирует кетоновые тела. По­скольку глюкоза при недостаточности инсулина усваивается клетками плохо, значительная часть потребностей организма в энергии обеспечивается за счет использования кетоновых тел. При диабете кетонемия часто бывает 100 мг/дл, а может достигать и 350 мг/дл. При та­кой кетонемии возникает и кетонурия - с мочой выделяется до 5 г кетоновых тел в сутки. В тканях происходит декарбоксилирование ацетоуксусной кислоты: от больных исходит запах аце­тона, который ощущается даже на расстоянии.

Кетоновые тела, являясь кислотами, снижают буферную ем­кость крови, а при высоких концентрациях снижают и рН кро­ви - возникает ацидоз. В норме рН крови равна 7,4чь0,04. При содержании кетоновых тел 100 мг/дл и больше рН крови может быть близко к 7,0. Ацидоз такой степени резко нарушает функ­ции мозга, вплоть до потери сознания.

3. Азотемия и азотурия. При недостаточности инсулина сни­жается синтез белков и соответственно увеличивается катаболизм аминокислот. В связи с этим у больных повышена концен­трация мочевины в крови и увеличено ее выведение с мочой.

4. Полиурия и полидипсия. Концентрационная способность почек ограничена, поэтому для выведения больших количеств глюкозы, кетоновых тел и мочевины при диабете требуется вы­деление больших количеств воды. Больные выделяют мочи в 2-3 раза больше, чем в норме (полиурия). Соответственно и потреб­ление воды у них увеличивается (полидипсия). При тяжелых формах диабета может наступить обезвоживание организма: в результате выделения больших количеств мочи уменьшается объ­ем крови; в нее поступает вода из межклеточной жидкости; меж­клеточная жидкость становится гиперосмоляльной и “всасывает” воду из клеток. Быстро развиваются внешние признаки дегидра­тации - сухие слизистые оболочки, дряблая и морщинистая ко­жа, запавшие глаза. Кровяное давление при этом падает, и по­этому ухудшается снабжение тканей кислородом.

Ацидоз, вызванный накоплением кетоновых тел, и дегидрата­ция - наиболее грозные симптомы диабета. Они являются пред­шественниками диабетической комы - резкого нарушения всех функций организма с потерей сознания. Больного, находящегося в предкоматозном или коматозном состоянии, можно спасти вве­дением в кровь инсулина и больших количеств физиологического раствора.

Здесь рассмотрены наиболее характерные симптомы диабета. Существует много форм диабета, различающихся как по тяже­сти, так и по набору симптомов. В регуляции обмена углеводов, жиров и аминокислот участвуют не только те гормоны, о которых здесь шла речь, но и ряд других - соматотропин, соматостатин, тироксин, половые гормоны. Различные состояния этих систем у разных людей создают разнообразие форм диабета. Кроме то­го, проявления диабета могут быть разными в зависимости от то­го, в каком звене нарушена инсулиновая регуляция это может быть снижение скорости синтеза или секреции инсулина на любом из многочисленных этапов процесса или уве­личение скорости инактивации инсулина в печени и крови, или нарушение его связывания с рецепторами. В первых двух слу­чаях концентрация инсулина в крови снижена (в 2-10 раз, диа­бет 1 типа), в третьем случае нормальна или даже больше нормы (диабет II типа).

Частота заболеваемости диабетом среди родственников боль­ных выше, чем в случайной подборке людей. Это свидетельствует о наследственной предрасположенности к диабету; предрасполо­женность наследуется как рецессивный признак. С другой сто­роны, заболеваемость зависит и от условий существования, преж­де всего от питания: высококалорийная, богатая жирами и угле­водами пища способствует проявлению болезни у предрасполо­женных к ней людей.

Основным методом лечения диабета является заместительная терапия, т. е. систематическое введение недостающего гормона.

83. Регуляция водно-солевого обмена. Строение, метаболизм и механизм действия вазопрессина и альдостерона. Ренин-ангиотензиновая система. Биохимические меха­низ­мы развития почечной гипертензии, отеков, обезвоживания.

Вода и растворенные в ней вещества, в том числе минераль­ные соли, создают внутреннюю среду организма, свойства ко­торой сохраняются постоянными или изменяются закономерным образом при изменении функционального состояния органов и клеток.

Вода тканей является не просто растворителем или инертным компонентом: она выполняет существенную структурную и функ­циональную роль. Например, взаимодействие белков с водой обеспечивает их конфирмацию с преимущественным расположе­нием гидрофильных групп на поверхности белковой глобулы, а гидрофобных - внутри. Еще большее значение имеет вода для структурной организации биологических мембран и их основы - двойного липидного слоя, в котором гидрофильные поверхности каждого монослоя взаимодействуют с водой, отграничивая от нее гидрофобное пространство внутри мембраны, между монослоями.

Вода служит средством транспорта веществ как в пределах клетки и окружающего ее многоклеточного вещества, так и меж­ду органами (кровеносная и лимфатическая системы). Подавля­ющая часть химических реакций в организме происходит с ве­ществами, растворенными в воде. Во многих химических превра­щениях вода служит реагентом: это реакции гидролиза, гидрата­ции, дегидратации, образование воды при тканевом дыхании, гидроксилазных реакциях; у растений происходит фотоокисление воды, и образующийся при этом водород используется для вос­становления углекислого газа при фотосинтезе.

Почти 1\3 массы тела человека приходится на воду. Суточное потребление воды составляет около 2 л, к этому добавляется 0,3-0,4 л метаболической воды, образующейся при тканевом дыхании. При отсутствии питья человек погибает через несколько суток в результате дегидратации тканей, когда количество воды в организме уменьшается примерно на 12%.

Основными параметрами жидкой среды организма являются осмотическое давление, рН и объем. Осмотическое давление и рН межклеточной жидкости и плазмы крови одинаковы; они также одинаковы в межклеточной жидкости разных органов. С другой стороны, значение рН внутри клеток разных типов может быть различным; оно может быть различным и в разных отсеках одной клетки. Различие рН объясняется особенностями метаболизма, механизмами активного транспорта, избирательной проницае­мостью мембран. Однако значение рН, характерное для данного типа клеток, поддерживается на постоянном уровне; повышение или понижение рН приводит к нарушению функций клетки. Под­держание постоянства внутриклеточной среды обеспечивает постоянством осмотического давления, рН и объема межклеточной жидкости и плазмы крови. В свою очередь постоянство параметров внеклеточной жидкости определяется действием почек и системы гормонов, регулирующих их функцию.

Осмотическое давление внеклеточной жидкости в значитель­ной мере зависит от соли (NaCL), которая в этой жидкости содержится в наибольшей концтатрации. Поэтому основ­ной механизм регуляции осмотического давления связан с изме­нением скорости выделения либо воды, либо NaCl Регуляция объема происходит путем одновременного изменения скорости выделения и воды, и NaCI. Кроме того, мёханизм жажды регулирует потребление воды. Регуляция рН обеспечивается избирательным выде­лением кислот или щелочей с мочой; рН мочи в зависимости от этого может изменяться в пределах от 4,6 до 8,0.

С нарушением водно-солевого гомеостаза связаны такие па­тологические состояния, как дегидратация тканей или отеки, по­вышение или снижение кровяного давления, шок, ацидоз, алка­лоз.

Вазопрессин синтезируется в нейронах гипоталамуса, по аксонам

транспортируется в заднюю долю гипофиза и секретируется из окончаний этих аксонов в кровь. Осморецепторы гипоталамуса при повышении осмотического давления тканевой жидкости сти­мулируют освобождение вазонрессина из секреторных гранул. Вазопрессин увеличивает скорость реадсорбции воды из первич­ной мочи и тем самым уменьшает диурез. Моча при этом становится более концентрированной. Таким путем антидиуретический гормон сохраняет необходимый объем жидкости в организме, не влияя на количество выделяемого NaCI. Осмотическое давле­ние внеклеточной жидкости при этом уменьшается, т. е. лик­видируется стимул, который вызвал выделение вазопрессина.

При некоторых болезнях, повреждающих гипоталамус или ги­пофиз (опухоли, травмы, инфекции), синтез и секреция вазопрес­сина уменьшаются.

Кроме снижения диуреза вазопрессин вызывает также суже­ние артериол и капилляров, а следователь­но, и повышение кровяного давления. Это действие обнаружива­ется лишь при достаточно высокой концентрации вазопрессина и, вероятно, не имеет физиологического значения.

Альдостерон. Этот стероидный гормон вырабатывается, в коре. надпочечников; он содержит альдегидную группу, что нашло от­ражение в его названии. Суточная секреция альдостерона из­меряется микрограммами. Секреция увеличивается при снижении концентрации NaCI в крови. В почках Альдостерон увеличивает скорость pea6cop6ции в канальцах нефронов, что вызывает задержку NaCI в организме, Тем самым устраняется стимул, который вызвал секрецию альдостерона.

Избыточная секреция альдостерона {гиперальдостеронизм) приводит, соответственно, к избыточной задержке NaCI и повы­шению осмотического давления внеклеточной жидкости. А это служит сигналом освобождения вазопрессина, который ускоряет реабсорбцию воды в почках. В результате в организме накаплива­ется и NaCI, и вода; объем внеклеточной жидкости увеличивается при сохранении нормального осмотического давления. Ежедневное введение альдостерона человеку приводит к дополнительному накоплению в организме до 400 ммоль NaCI (около Юг) и до “3 л воды, после чего дальнейшее накопление прекращается. В ре­зультате увеличения объема внеклеточной жидкости повышается кровяное давление.

Система ренин - ангиотензин. Эта система служит главным механизмом регуляции секреции альдостерона; от нее зависит также и секреция вазопрессина.

Ренин представляет собой протеолитический фермент, син­тезирующийся в юкстагломерулярных клетках, окружающих при­носящую артериолу почечного клубочка. Юкстагломерулярные клетки являются рецепторами растяжения стенки артериолы; снижение кровяного давления в приносящих артериолах служит сигналом секреции ренина в кровь. " \

Субстратом ренина является ангиотензиноген - гликопротеин крови, синтезирующийся в печени. Ренин гидролизует пептидную связь между Leu 10 и Leu II в молекуле ангиотензиногена, и от нее отщепляется N-концевой декапептид ангиотензин 1. Последний превращается в ангиотензин II (октапептид) при действии карбоксидипептидилпептидазы, отщепляющей дипептид His-Lei с карбоксильного конца ангиотензина 1. Карбоксидипептидил-пептидаза имеется в плазматической мембране эндотелия кровеносных сосудов; особенно высока активность этого фермента легких. Ангиотензин II - наиболее мощное из известных сосудосуживающих веществ; вследствие этого действия он повышает кровяное давление. Кроме того, ангиотензин II стимулирует освобождение альдостерона, а также вазопрессина, и вызывает жажду Эти свойства ангиотензина II определяют его роль в регуляции водно-солевого обмена.

Ренин-ангиотензиновая система играет важную роль при восстановлении объема крови, который может уменьшиться результате кровотечения, обильной рвоты, поноса (диарея) . Сужение сосудов под действие ангиотензина II играет роль экстренной меры для поддержания кровяного давления. Затем поступающие с питьем и пищей вод и NaCI задерживаются в организме в большей мере, чем в норме, что обеспечивает восстановление объема и давления крови

Снижение перфузионного давления в почечных клубоч­ках может наступить и вслед­ствие сужения (стеноза) по­чечной артерии. В этом случае также включается вся система, представленная на рис. 128. Однако, поскольку исходные объем и давление крови при этом нормальны, включение си­стемы приводит к повышению кровяного давления сверх нор­мы как вследствие сужения со­судов ангиотензином II, так и вследствие хронической задер­жки воды и NaCI. Эту форму гипертонии называют почечной.

84. Кальций и фосфор. Биологические функции, распределение в организме. Регуля­ция обмена. Гипо- и гиперкальциемия. Рахит.

Основные функции кальция заключаются в следующем:

1) соли кальция образуют минеральный компонент костей;

2) ионы кальция являются кофакторами многих ферментов и не ферментных белков;

3) ионы кальция во взаимодействии с бел­ком кальмодулином служат посредником в передаче регуляторных сигналов (подобно цАМФ). Поскольку концентрация комплекса зависит от концентрации Са, активность фермента тоже зависит от концентрации Са в клетке. При снижении концентрации Са происходит распад активного комплекса и снижение активности фермент.

Таким способом регулируется активность фосфодиэстеразы цАМФ, липаз, некоторых протеинкиназ, в том числе киназы фосфорилазы б.

Концентрация Са в клетке зависит от Са-АТФазы, каль­циевых каналов и от концентрации Са во внеклеточной жид­кости, а в последней она регулируется гормонами.

В организме взрослого человека содержится около 1,5 кг кальция, который образует два неравных фонда. Один из них - это кальций костей. В состав костей входит 99% всего кальция организма, 87% фосфора, около 60% магния и примерно 25% натрия. Кальций в костях находится в форме минерала гидро-ксиапатита. Мине­ральные компоненты кости составляют половину ее массы; дру­гая половина образована органическим матриксом, который на 90% состоит из коллагена. Поскольку минеральная часть кости имеет большую плотность, на нее приходится только четверть объема кости.

Другой фонд кальция в организме - это ионы Са^, раство­ренные в жидкостях или соединенные & белками жидкостей и тканей. Между обоими фондами происходит постоянный обмен кальцием.

Обмен кальция тесно связан с обменом фосфорной кислоты, образующей с кальцием ПЛОХО растворимые соли В регуляции обмена кальция участвуют паратгормон, производные витамина Вз и кальцитонин.

ПАРАТГОРМОН

Параттормон - это пептидный гормон (84 аминокислотных остатка), образующийся в паращитовидных железах, располо­женных на задней поверхности щитовидной железы. Его синтез и секреция стимулируются при снижении концентрации Са в крови и подавляются при повышении. Период полжизни паратгормона в крови человека составляет примерно 20 мин.

Основными органами-мишенями паратгормона являются кос­ти и почки. Мембраны клеток этих органов содержат специфи­ческие рецепторы, улавливающие паратгормон, которые связаны с аденилатциклазой. .

КАЛЬЦИТОНИН

Пептидный гормон кальцитонин (32 аминокислотных остатка) синтезируется в С-клетках паращитовидных и щитовидной же­лез. Секреция кальцитонина увеличивается при возрастании со­держания кальция в крови; таким образом, паратгормон и кальцитонин регулируются кальцием противоположным образом. Основной орган-мишень для кальцитонина - кости, в которых он подавляет мобилизацию кальция

При гипокальциемии наблюдаются судороги, гипер­рефлексы, спазмы гортани, которые могут быть причиной смерти от асфиксии. Эти явления - следствие снижения порога возбуж­дения нервных и мышечных клеток: нерв может быть возбужден даже легким стимулом в любом месте его протяжения. Тяжелая гипокальциемия бывает редко. Наиболее частая ее причина - это гипопаратиреоз, вызванный повреждением паращитовидных желез при операциях на щитовидной железе. Кроме того, гипокальциемия может быть следствием нарушения всасывания каль­ция в кишечнике, например, при гиповитаминозе D, при большом содержании в пище оксалата или других соединений, связываю­щих кальций.

При гиперкальциемии снижается нервно-мышечная возбудимость; если концентрация кальция в крови достигает 16 мг/дл, наступает глубокое расстройство нервных функций - психозы, ступор и даже кома. Характерными симптомами гипер­кальциемии являются кальцификация мягких тканей и образова­ние камней в мочевых путях. Чаще всего причиной гиперкаль­циемии бывает гиперпаратиреоз как результат образования опу­холи из клеток паращитовидных желез; гиперкальциемия бывает также при передозировке витамина D.

85. Глюкокортикоиды. Строение, условия синтеза. Влияние на обмен белков, липидов и углеводов в тканях-мишенях. Гипо – и гиперфункция гормонов.

Глюкокортикоиды оказывают разностороннее влияние на обмен веществ в разных тканях. В мышечной, лимфатической, соединительной и жировой тканях глюкокортикоиды проявляют катаболическое действие и вызывают снижение проницаемости клеточных мембран и соответственно торможение поглощения глюкозы и аминокислот; в то же время в печени они оказывают противоположное действие. Конечным ито­гом действия глюкокортикоидов является развитие гипергликемии, обусловленной главным образом глюконеогенезом. Механизм развития гипергликемии после введе­ния глюкокортикоидов включает, кроме того, снижение синтеза гликогена в мыш­цах, торможение окисления глюкозы в тканях и усиление распада жиров.

В ткани печени доказано индуцирующее действие кортизона и гидрокортизона на синтез некоторых белков-ферментов: триптофанпирролазы, тирозинтрансаминазы, и треониндегидратаз и другие, свидетельствующее, что гормоны действуют на первую стадию передачи генетической информации - стадию транскрипции, способ­ствуя синтезу мРНК

86. Строение, синтез и метаболизм гормонов щитовидной железы. Влияние на обмен веществ. Гипо- и гипертиреозы.

Гормоны щитовидной железы

Щитовидная железа играет исключительно важную роль в обмене веществ. Об этом свидетельствуют резкое изменение основного обмена, наблюдаемое при наруше­ниях деятельности щитовидной железы, а также ряд косвенных данных, в частности обильное ее кровоснабжение, несмотря на небольшую массу (20-30 г). Щитовидная железа состоит из множества особых полостей - фолликулов, заполненных вязким секретом - коллоидом. В состав этого коллоида входит особый йодсодержащий гликопротеин с высокой молекулярной массой (порядка 650 000 Да), получивший название йодтиреоглобулина; он представляет собой запасную форму тироксина- основного гормона фолликулярной части щитовидной железы.

Помимо этого гормона (биосинтез и функции которого будут рассмотрены ниже), в особых клетках - так называемых парафолликулярных, или С-клетках щитовидной железы, - синтезируется гормон пептидной природы, обеспечивающий постоянную концентрацию кальция в крови и получивший соответственно название каль- цитонина.В настоящее время кальцитонин не только выделен в чистом виде из ткани щитовидной железы животных и человека, но и полностью раскрыта 32-членная аминокислотная последовательность, подтвержденная химическим синтезом.

Точкой приложения действия тиреоидных гормонов считаются внутриклеточные рецепторы - белки, обеспечивающие транспорт тиреоидных гормонов в ядро и взаимодействие со специфическими генами; в результате увеличивается синтез ферментов, регулирующих скорость окислительно-восстано­вительных процессов. Естественно поэтому, что недостаточная функция щитовидной железы (гипофункция) или, наоборот, повышенная секреция гормонов (гиперфункция) вызывает глубокие расстройства физиологического статуса организма.

Гипофункция щитовидной железы в раннем детском возрасте приводит к развитию болезни, известной в литературе" как кретинизм. Помимо остановки роста, специ­фических изменений со стороны кожи, волос, мышц, резкого снижения скорости про­цессов обмена, при кретинизме отмечаются глубокие нарушения психики; специфическое гормональное лечение в этом случае не дает положительных результатов.

Недостаточная функция щитовидной железы в зрелом возрасте сопровождается развитием гипотиреоидного отека, или микседемы (от греч. туха - слизь, oedemo - отек). Это заболевание чаще встречается у женщин и характеризуется нарушением водно-солевого, основного и жирового обменов. У больных отмечаются слизистый отек, патологическое ожирение, резкое снижение основного обмена, выпадение волос и зубов, общие мозговые нарушения и психические расстройства. Кожа стано­вится сухой, температура тела падает; в крови повышено содержание глюкозы. Гипотиреоидизм сравнительно легко поддается лечению препаратами щитовидной железы.

Следует отметить еще одно поражение щитовидной железы, получившее название эндемического зоба. Болезнь обычно развивается у лиц, проживающих в горных местностях, где содержится недостаточно йода в воде и растениях. Недостаток йода приводит к компенсаторному увеличению массы ткани щитовидной железы за счет преимущественного разрастания соединительной ткани, однако этот процесс не сопровождается увеличением секреции тиреоидных гормонов. Болезнь не приводит к серьезным нарушениям функции организма, хотя увеличенная в размерах щитовидная железа создает определенные неудобства. Лечение в данном случае сводится к обога­щению продуктов питания, в частности поваренной соли, неорганическим йодом.

Повышенная функция щитовидной железы (гиперфункция) вызывает развитие и пертиреоз а, известного в литературе под названием зоб диффузный токсический (болезнь Грейвса или базедова болезнь). Резкое повышение обмена веществ сопровож­дается усиленным распадом тканевых белков, что приводит к развитию отрицатель­ного азотистого баланса.

Наиболее характерным проявлением болезни считается триада симптомов: резкое увеличение числа сердечных сокращений (тахикардия), пучеглазие (экзофтальм) и зоб, т. е. увеличенная в размерах щитовидная железа; у больных развиваются общее истощение организма, а также психические расстройства

87. Катехоламины. Строение, биосинтез, биологические функции, нарушения обмена, последствия.

Биосинтез катехоламинов. В мозговом веществе надпочечни­ков и нервной ткани тирозин служит предшественником катехо­ламинов, важнейшими из которых являются дофамин, норадреналин и адреналин. Дофамин и норадреналин выполняют функции медиаторов в синаптической передаче нервного импульса; адреналин - это гор­мон мозгового вещества надпочечников, который, в частности, стимулирует мобилизацию депонированных углеводов и жиров.

Инактивация катехоламинов происходит в основном двумя путями. Первый путь - метилирование по гидроксильной группе в третьем положении: донором метильной группы служит S-аде-нозилметионин. Второй путь связан с дезаминированием катехоламинов при действии моноаминоксидазы: в результате дезаминирования катехоламин превращается в катехолимин, который спонтанно гидролизуется с образованием альдегида и аммиака. Таким образом, моноаминоксидаза катализирует дегидрирование амина, причем акцептором водорода служит кислород; пероксид водорода затем разрушается каталазой.

88. Центральная регуляция эндокринной системы: роль либеринов, статинов, тропных гормонов гипофиза.

Либерины и статины, секреция которых в гипоталамусе стимулируется нервным импульсом, проходят небольшой путь до гипофиза, и, действуя через специфические рецепторы мембран, стимулируют или ингибируют секрецию гор­монов гипофизарными клетками.

В гипофизе синтезируется ряд биологически активных гормонов белковой и пептидной природы, оказывающих стимулирующий эффект на различные физиологические и биохимические процессы в тканях-мишенях (табл. 8.2). В зависимости от места синтеза различают гормоны передней, задней и промежуточной долей гипофиза . В передней доле вырабатываются в основном белковые и полипептидные гормоны , называемые тропнымигормонами , или тропинами, вследствие их стимулирующего действия на ряд других эндокринных желез . В частности, гормон , стимулирующийсекрецию гормонов щитовидной железы , получил название «тиротропин ».

89. Стероидные гормоны. Биосинтез, катаболизм, биологические функции. Проявле­ния недостаточности и избытка гормонов.

Стероидные гормоны представляют собой группу соединений, родственных по происхождению и структуре; все они образуются из холестерина. Промежуточным продуктом при синтезе стероидных гормонов служит прегненолон. Прегненолон обра­зуется во всех органах, синтезирующих любые стероидные гормоны. Далее пути превращения расходятся: в коре надпочеч­ников образуются глюкокортикостероиды и минералокортикостероиды в семенниках-мужские половые гор­моны, в яичниках-женские половые гормоны.

Прегненолон может превратиться в одно из четырех соедине­ний - прогестерон или гидроксипрегненолоны с различным рас­положением гидроксигрупп. Из этих соединений затем образу­ются разные стероидные гормоны, причем каждый из них может синтезироваться больше, чем одним путем. За большинством стрелок на схеме скрывается не одна, а от двух до четырех реак­ций; кроме того, указаны не все возможные пути синтеза. В це­лом пути синтеза стероидных гормонов образуют довольно слож­ную сетку реакций. Многие промежуточные продукты этих путей также обладают некоторой гормональной активностью, причем часто одно и то же вещество проявляет активность в регуляции разных процессов - обмена углеводов, водно-солевого баланса, репродуктивных функций. Однако основными стероидами, опре­деляющими состояние этих метаболических и функциональных систем, служат кортизол (регуляция обмена углеводов и амино­кислот), Альдостерон (регуляция водно-солевого обмена), тесто-стерон, эстрадиол и прогестерон (регуляция репродуктивных функций).

В результате инактивации и катаболизма стероидных гормо­нов образуется значительное количество стероидов, содержащих кетогруппу в положении 17 (17-кетостероиды). Эти вещества выво­дятся через почки. Суточная экскреция 17-кетостероидов у взрос­лой женщины составляет 5-15 мг, у мужчины 10-25 мг. Опре­деление 17-кетостероидов в моче используется для диагностики: их выделение увеличивается при болезнях, сопровождающихся гиперпродукцией стероидных гормонов, и уменьшается при гипо-продукции.

90. Регуляция концентрации глюкозы в крови. Гипо- и гипергликемии, причины их возникновения. Определение толерантности к глюкозе.

Использование источ­ников энергии обеспечивает экономное расходование глюкозы, что имеет важное значение, поскольку сберегает глюкозу для питания мозга и некоторых других зависимых от глюкозы тка­ней. Скорость поступления глюкозы в ткань мозга целиком зависит от ее концентрации в крови, поэтому поддержание этой концентрации на достаточном уровне - необходимое условие нормального питания и функционирования мозга.

Концентрация глюкозы в крови определяется балансом ско­ростей ее поступления в кровь, с одной стороны, и потребления тканями-с другой. В постабсорбтивном состоянии в норме концентрация глюкозы в крови равна 60-100_ мг\дл (3,3-5,5 ммоль/л); более высокая концентрация указывает на нарушение обмена углеводов. После приема пищи или раствора сахара-(сахарная нагрузка) гиперглюкоземия бывает и у здоровых людей -ллиментарная Обычно она не превышает 15ммоль\л и начинает снижаться через 1-1,5 ч после еды. При нарушениях углеводного обмена (стероидный диабет, сахарный диабет) алиментарная гиперглюкоземия превышает 150 мг/дл и держится дольше.

Толерант­ность к глюкозе измеряют с целью 1 диагностики нарушений углеводного "обмена^ Обследуемому дают "выпить j^:TBOJ3\axaga_H3-расцета--1^1__на. 1^г1массь1Т£да^сдха^зйаа_^шгр^.з-1 ка) и через каждые 30 мин берут ~ пробы крови для определения кон-1 центрации глюкозы. Типичные ре-[ зультаты измерения толерантности приведены на рис. 134.

Если гиперглюкоземия превы-1 шает почечный порог, т. е. величи-1 ну 180 мг/дл, то глюкоза начинает 1 выводиться с мочои__(1люкоэурия). ? Глюкозурия свидетеДБ^гвует о нару-1 шении углеводного обмена или о

Повреждении почек.

1 Гипоглюкоземия также возникает при патологических состоя-1 ниях, в частности дри голодадии^ Снижение концентрации глю-1 козы в крови до 4(Гш7дл^1риводит к возникновению^судорог и 1 Других симптомов нарушения функций головного мозга вслёд-1 ствие нарушения его питания.

1 Переключение, метаболизма при смене периодов пищеварения 1и постабсорбтивного состояния и поддержание концентрации 1 глюкозы в крови обеспечиваются системой регуляторных меха-1 низмов, включающих гормоны кортизол, инсулин, глюкагон, ^ адреналин.

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Регуляция обмена веществ осуществляется нервным и гуморальным путем. Интенсивность обмена веществ регулируется трофическими влияниями, которые осуществляются симпатическими и парасимпатическими нервами. Симпатические нервы повышают уровень обмена веществ в тканях, парасимпатические – понижают.

Обмен веществ регулируется нейронами гипоталамуса. Раздражение или разрушение нейронов этих ядер приводит к различным изменениям обмена веществ и энергии. Гипоталамус функционально тесно связан с корой головного мозга. Можно выработать условный рефлекс на изменение уровня обмена веществ, вызванное мышечной работой, повышением или понижением температуры окружающей среды. Такие условные рефлексы вырабатываются у человека и животных постоянно в естественных условиях жизни. Условнорефлекторные влияния на метаболизм осуществляются через гипоталамус и вегетативную нервную систему. В регуляции обмена веществ принимают участие базальные ганглии и мозжечок.

Нейроны ядер гипоталамуса, участвующие в регуляции обмена веществ, могут изменять свою активность рефлекторно при раздражении соответствующих рецепторных аппаратов, расположенных в самом гипоталамусе. Гипоталамус изменяет деятельность гипофиза, гормоны которого либо непосредственно, либо через другие железы внутренней секреции оказывают влияние на обмен веществ.

Так, гормоны гипофиза стимулирует инкреторную функцию щитовидной железы, коркового слоя надпочечников и половых желез. Соматропный гормон, выделяемый передней долей гипофиза, оказывает влияние на процессы белкового синтеза. Напротив, гормоны коры надпочечников обладают так называемым антианаболическим действием, заключающимся в том, что синтез и интенсивность превращений белков подавляются. Гормоны щитовидной железы – тироксин и трийодтиронин – резко повышает уровень обмена белков.

В регуляции обмена углеводов наиболее важная роль принадлежит гормону поджелудочной железы – инсулину. Этот гормон понижает уровень сахара в крови, так как обеспечивает проникновение глюкозы в клетки, в частности в клетки печени и мышц, где глюкоза откладывается про запас в виде гликогена.

На обмен жиров существенное влияние оказывают половые гормоны. Так, при угасании половых функций, как правило происходит избыточное отложение жиров. Повышение функции передней доли гипофиза способствует выходу жира из его депо.

Регуляция водно-солевого состава осуществляется центром, расположенным в гипоталамусе. В нем синтезируется антидиуретический гормон, который поступает в заднюю долю гипофиза, а затем в кровь. Уменьшение количества воды в организме приводит к возбуждению осморецепторов и как следствие к выходу антидиуретического гормона, что ведет к задержке воды в организме. В регуляции электролитного обмена важную роль играют гормоны коры надпочечника – минералокортикоиды. Они повышают выделение калия, вызывают задержку в организме натрия, увеличивают количество внеклеточной жидкости.

Нервная система регулирует обменные, энергетические и тепловые процессы в организме. Впервые это было показано в опытах Клода Бернара и И. П. Павлова. В середине прошлого века Клод Бернар, произведя укол иглой в дно IV желудочка продолговатого мозга кролика, обнаружил резкое повышение уровня сахара в крови и появление его в моче. Этот опыт получил название "сахарный укол". Впоследствии было показано, что "сахарный укол" нарушает не только углеводный, но и другие виды обмена. Под влиянием этого вмешательства у животных понижается температура печени, мышц, кишечника, повышается интенсивность белкового обмена, что сопровождается увеличенным выделением азота с мочой.

И. П. Павлов в опытах на животных показал, что при раздражении усиливающего нерва происходит повышение работоспособности сердца. Он высказал предположение о том, что это связано с трофическим влиянием нервной системы на обмен веществ в сердечной мышце. В настоящее время эти данные подтверждены экспериментально. В частности, установлено, что при раздражении усиливающего нерва в сердечной мышце увеличивается количество сократительных белков и повышается обмен АТФ. Было также показано, что раздражение симпатических нервов стимулирует распад гликогена в печени, а парасимпатических - его образование.

В дальнейшем была установлена возможность условнорефлекторных изменений уровня обмена веществ. Если многократно сочетать прием человеком сахара с одновременным включением метронома, то через некоторое время изолированное применение условного сигнала приводит к повышению содержания сахара в крови. Условнорефлекторный механизм изменения обмена веществ и энергии наблюдается у человека в предстартовых и предрабочих состояниях. У спортсменов до начала соревнования, а у рабочего перед работой отмечается повышение обмена веществ, температуры тела, увеличивается потребление кислорода и выделение углекислого газа. Можно вызвать условнорефлекторные изменения обмена веществ, энергетических и тепловых процессов у людей и на словесный раздражитель.

Влияние нервной системы на обменные и энергетические процессы в организме опосредуется несколькими путями:

1) непосредственное влияние нервной системы (через гипоталамус, эфферентные нервы) на ткани и органы;

2) опосредованное влияние нервной системы через гипофиз и его соматотропный гормон;

3) опосредованное влияние нервной системы через тропные гормоны гипофиза и периферические железы внутренней секреции;



4) прямое влияние нервной системы (гипоталамус) на активность желез внутренней секреции и через них на обменные процессы в тканях и органах.

Основным отделом центральной нервной системы, который регулирует все виды обменных и энергетических процессов, является гипоталамус. В гипоталамусе обнаружены группы ядер, которые регулируют обмен углеводов, жиров, белков, воды и солей, а также обмен тепла и потребление пищи.

Как уже указывалось, выраженное влияние на обменные процессы и теплообразование оказывают железы внутренней секреции. Так, гормоны щитовидной железы в определенных дозах, соматотропный гормон гипофиза, инсулин, половые гормоны (андрогены) усиливают синтетические процессы в организме, особенно в отношении белка (анаболическое действие гормонов). Гормоны коры надпочечников и щитовидной железы в больших количествах усиливают катаболизм, т. е. распад белков.

В организме ярко проявляется тесное взаимосвязанное влияние нервной и эндокринной систем на обменные и энергетические процессы. Так, возбуждение симпатической нервной системы не только оказывает прямое стимулирующее действие на обменные процессы, но при этом увеличивается также выход гормонов щитовидной железы и надпочечников (тироксин и адреналин) в кровь. За счет этого дополнительно усиливается обмен веществ и энергии. Кроме того, эти гормоны сами повышают тонус симпатического отдела нервной системы. Значительные изменения в метаболизме и теплообмене происходят при недостатке в организме гормонов желез внутренней секреции. Так, недостаток тироксина приводит к снижению основного обмена. Это связано с уменьшением потребления кислорода тканями и ослаблением теплообразования. В результате снижается температура тела.

Гормоны желез внутренней секреции участвуют в регуляции обмена веществ и энергии, изменяя проницаемость клеточных мембран (инсулин), активируя ферментные системы организма (адреналин, глюкагон и др.) и влияя на их биосинтез (глюкокортикоиды).



Таким образом, регуляция обмена веществ и энергии осуществляется нервной и эндокринной системами, которые обеспечивают приспособление организма к меняющимся условиям его обитания.

Контрольные вопросы

1. Что называют теплообменом?

2. Каких животных называют пойкилотермными и гомойотермными?

3. За счет каких процессов образуется тепло в организме?

4. Каковы нормальные колебания температуры тела человека?

5. Что такое химическая терморегуляция? Каковы ее механизмы?

6. Что такое физическая терморегуляция? Каковы ее механизмы?

7. Что такое гипертермия? Что такое гипотермия?

8. Как меняется терморегуляция при физической нагрузке?

9. Как меняется терморегуляция при изменении температуры внешней среды?

10. Где расположены терморецепторы?

11. Где находятся центры терморегуляции?

12. Как осуществляется нервная регуляция теплообмена?

13. Как в организме осуществляется регуляция обмена веществ и энергии?

1. На сколько градусов нагреется тело человека (масса 70 кг), если

лишить его на 1 ч теплоотдачи?

2. Какое количество тепла отдает кожа человека при испарении 0,5 л пота?

В регуляции обмена веществ и энергии выделяют регуляцию об­мена организма веществами и энергией с окружающей средой и регуляцию метаболизма в самом организме.

Регуляция обмена организма с окружающей средой питательными веществами рассматривается в главе 9.

Вопросы регуляции водно-солевого обмена описаны в главе 12. Регуляция обмена организма с окружающей средой теплом, как конечной формой превращения всех видов энергии, обсуждается в главе 11.

Поэтому здесь представлены общие вопросы нейрогуморальной регуляции обмена веществ и энергии в организме и, главным об­разом, регуляция метаболизма целостного организма.

Конечной целью регуляции обмена веществ и энергии является удовлетворение в соответствии с уровнем функциональной актив­ности потребностей целостного организма, его органов, тканей и отдельных клеток в энергии и разнообразных пластических веще­ствах. В целостном организме постоянно существует необходимость согласования общих метаболических потребностей организма с по­требностями клетки органа, ткани. Такое согласование достигается посредством распределения между органами и тканями веществ, поступающих из окружающей среды, и перераспределения между ними веществ, синтезирующихся внутри организма.

Обмен веществ, протекающий внутри организма, не связан пря­мыми способами с окружающей средой. Питательные вещества,

прежде чем они смогут вступить в обменные процессы, должны быть получены из пищи в желудочно-кишечном тракте в молеку­лярной форме. Кислород, необходимый для биологического окисле­ния, должен быть выделен в легких из воздуха, доставлен в кровь, связан с гемоглобином и перенесен кровью к тканям. Скелетные мышцы, являясь в организме одним из мощных потребителей энер­гии, также обслуживают обмен веществ и энергии, обеспечивая по­иск, прием и обработку пищи. Непосредственное отношение к об­мену веществ и энергии имеет выделительная система. Таким об­разом, регуляция обмена веществ и энергии - это мультипарамет-рическая регуляция, включающая в себя регулирующие системы мно­жества функций организма (например, дыхания, кровообращения, выделения, теплообмена и др.).

Роль центра в регуляции обмена веществ и энергии играет гипо­ таламус. Это обусловлено тем, что в гипоталамусе локализованы нервные ядра и центры, имеющие непосредственное отношение к регуляции голода и насыщения, теплообмена, осморегуляции. В гипоталамусе идентифицированы полисенсорные нейроны, реагиру­ющие сдвигами функциональной активности на изменения концент­рации глюкозы, водородных ионов, температуры тела, осмотического давления, т.е. важнейших гомеостатических констант внутренней среды организма. В ядрах гипоталамуса осуществляется анализ со­стояния внутренней среды организма и формируются управляющие сигналы, которые посредством эфферентных систем приспосаблива­ют ход метаболизма к потребностям организма.

В качестве звеньев эфферентной системы регуляции обмена ис­пользуется симпатический и парасимпатический отделы вегетатив­ной нервной системы. Выделяющиеся их нервными окончаниями медиаторы оказывают прямое или опосредованное вторичными по­средниками влияние на функцию и метаболизм тканей. Под управ­ляющим влиянием гипоталамуса находится и используется в каче­стве эфферентной системы регуляции обмена веществ и энергии - эндокринная система. Гормоны гипоталамуса, гипофиза и других эндокринных желез оказывают прямое влияние на рост, размноже­ние, дифференцировку, развитие и другие функции клеток. Гормоны принимают участие в поддержании в крови необходимого уровня таких веществ, как глюкоза, свободные жировые кислоты, мине­ральные ионы (см. главу 5).

Обмен веществ (анаболизм и катаболизм), получение запасаемой в макроэргических связях АТФ энергии, выполнение различных ви­дов работ с использованием метаболической энергии - это, как правило, процессы, протекающие внутри клетки. Поэтому важней­шим эффектором, через который можно оказать регулирующее воз­действие на обмен веществ и энергии, является клетка органов и тканей. Регуляция обмена веществ заключается в воздействии на скорость биохимических реакций, протекающих в клетках.

Наиболее частыми эффектами регуляторных воздействий на клетку являются изменения: каталитической активности ферментов и их концентрации, сродства фермента и субстрата, свойств микросреды,

в которой функционируют ферменты. Регуляция активности фер­ментов может осуществляться различными способами. "Тонкая на­стройка" каталитической активности ферментов достигается посред­ством влияния веществ - модуляторов, которыми часто являются сами метаболиты. Этим способом осуществляется регуляция отдель­ных звеньев метаболических превращений. При этом модулятор может оказывать своей воздействие в отдельной или нескольких тканях организма.

Метаболизм клетки в целом невозможен без интеграции многих биохимических превращений и сама возможность его осуществления определяется энергетическим и окислительно-восстановительным потенциалом клетки. Эта общая интеграция метаболизма обеспечи­вается, главным образом, с помощью аденилатов, участвующих в регуляции любых метаболических превращений клетки.

Интеграция обмена белков, жиров и углеводов клетки осущест­вляется посредством общих для них источников энергии. Действи­тельно, при биосинтезе любых простых и сложных органических слоединений, марокмолекул и надмолекулярных структур в качестве общих источников энергии используется АТФ, которая поставляет энергию для процессов фосфорилирования, или НАД Н, НАДФ Н, поставляющие энергию для восстановления окислительных соедине­ний. Таким образом, если в клетке осуществлять синтез (анаболизм) определенных веществ, то он может происходить за счет затраты химической энергии одного из общих подвижных источников (АТФ, НАД Н, НАДФ-Н), которые образуются при катаболизме других веществ (см.рис.10.1).

За общий энергетический запас клетки, полученный в ходе ката­болизма и являющийся движущей силой разнообразных превраще­ний, конкурируют все анаболические и другие процессы, протека­ющие с затратой энергии. Так, например, осуществление глюкоста-тической функции печени, основанной на способности печени син­тезировать глюкозу из лактата и аминокислот {глюконеогенез), несо­вместимо с одновременным синтезом жиров и белков. Глюконеоге­нез сопровождается расщеплением в печени белков и жиров и окис­лением образующихся при этом жирных кислот, что ведет к осво­бождению энергии, необходимой для синтеза АТФ и НАД Н, в свою очередь требующихся для глюконеогенеза.

Еще одним проявлением интеграции метаболических превращений белков, жиров и углеводов является существование общих предше­ ственников и общих промежуточных продуктов обмена веществ. Это - общий фонд углерода, общий промежуточный продукт обме­на- ацетил- КоА и другие вещества. Важнейшими конечными путями превращений, связующими метаболические процессы на различных этапах, являются цикл лимонной кислоты и реакции дыхательной цепи, протекающие в митохондриях. Так, цикл лимонной кисло­ты - главный источник СО 2 для последующих реакций глюконеоге­неза, синтеза жирных кислот и мочевины.

Одним из механизмов согласования общих метаболических по­требностей организма с потребностями клетки являются нервные и

гормональные влияния на ключевые ферменты. Характерными осо­бенностями этих ферментов являются: положение в начале того метаболического пути, к которому принадлежит фермент; прибли­женность расположения или ассоциированность со своим субстра­том; реагирование не только на действие внутриклеточных регуля­торов метаболизма, но и на внеклеточные нервные и гормональные воздействия.

Примерами ключевых ферментов являются гликогенфосфорилаза, фосфофруктокиназа, липаза. Их роль в процессах регуляции мета­болизма видна, в частности, при подготовке организма к "борьбе или бегству". При повышении в этих условиях в крови уровня адреналина до 10 -9 М он связывается с адренорецепторами плазма­тической мембраны, активирует аденилатциклазу, которая катализи­рует превращение АТФ в циклический АМФ. Последний активирует гликогенфосфорилазу, многократно усиливающую расщепление гли­когена в печени.

Процесс гликогенолиза в мышцах может одновременно активиро­ваться нервной системой и катехоламинами. Этот эффект достига­ется посредством выделения ионов Са ++ , его связывания с кальмо-дулином, являющимся субъединицей фосфорилазы, которая при этом активируется и приводит к мобилизации гликогена. Нервный меха­низм мобилизации гликогена осуществляется через меньшее число промежуточных этапов, чем гормональный. Этим достигается его быстродействие.

Удовлетворение энергетических потребностей организма посред­ством ускорения внутриклеточных процессов расщепления триглице-ридов в жировой клетчатке достигается активацией гормончувстви-тельной липазы. Повышение активности этого фермента (адренали­ном, норадреналином, глюкагоном) приводит к мобилизации сво­бодных жирных кислот, являющихся основным энергетическим суб­стратом окисления в мышцах при выполнении ими интенсивной и длительной работы.

Переход органов и тканей с одного уровня функциональной ак­тивности на другой всегда сопровождается соответствующими изме­нениями их трофики. Например, при рефлекторном сокращении скелетных мышц нервная система осуществляет не только пусковое действие, но и трофическое путем усиления в них местного кро­вотока и интенсивности обмена веществ. Увеличение силы сокра­щений миокарда под влиянием симпатической нервной системы обеспечивается одновременным усилением коронарного кровотока и метаболизма в мышце сердца. О влиянии нервной системы на тро­фику скелетных мышц свидетельствует тот факт, что денервация мышцы приводит к постепенной атрофии мышечных волокон. Важ­нейшее значение в осуществлении трофической функции нервной системы играет ее симпатический отдел. Через симпато-адреналовую систему достигается не только активация обмена веществ и энергии в клетке, но и создаются дополнительные условия для ускорения метаболизма. Норадреналин и адреналин, выброс которых в крово­ток возрастает при возбуждении симпатической нервной системы,

вызывают увеличение глубины дыхания, расширяют мускулатуру бронхов, что способствует доставке кислорода в кровь. Адреналин, оказывая положительное инотропное и хронотропное действие на сердце, увеличивает минутный объем крови, повышает систоличес­кое артериальное давление. В результате активации дыхания и кро­вообращения возрастает доставка кислорода к тканям.

Одним из интегральных показателей внутренней среды, отража­ющим обмен в организме углеводов, белков и жиров, является концентрация в крови глюкозы. Глюкоза является не только энер­гетическим субстратом, необходимым для синтеза жиров и белков, но и источником их синтеза. В печени происходит новообразование углеводов из жирных кислот и аминокислот.

Нормальное функционирование клеток нервной системы, мышц, для которых глюкоза является важнейшим энергосубстратом, воз­можно при условии, что приток к ним глюкозы обеспечит их энер­гетические потребности. Это достигается при содержании в литре крови у человека в среднем 1 г (0,8-1,2 г) глюкозы (рис. 10.3.).

При снижении содержания глюкозы в литре крови до уровня менее 0,5 г, вызванном голоданием, передозировкой инсулина, име­ет место недостаточность снабжения энергией клеток мозга. Нару­шение их функций проявляется учащением сердцебиения, слабостью и тремором мышц, головокружением, усилением потоотделения, ощущением голода. При дальнейшем снижении концентрации глю­козы в крови указанное состояние, именуемое гипогликемией, может перейти в гипогликемическую кому, характеризующуюся угнетением функций мозга вплоть до потери сознания. Введение в кровь глю­козы, прием сахарозы, инъекция глюкагона предупреждают или ос­лабляют эти проявления гипогликемии.

Кратковременное повышение уровня глюкозы в крови {гипергли­кемия) не представляет угрозы для жизни, но может приводить к повышению осмотического давления крови.

В нормальных условиях во всей крови организма содержится около 5 г глюкозы. При среднесуточном потреблении с пищей взрослым человеком, занимающимся физическим трудом, 430 г углеводов в условиях относительного покоя, тканями ежеминутно потребляется около 0,3 г глюкозы. При этом запасов глюкозы в циркулирующей крови достаточно для питания тканей на 3-5 минут и без ее вос­полнения неминуема гипогликемия. Потребление глюкозы возрастает при физической и психоэмоциональной нагрузках. Так как пери­одический (несколько раз в день) прием углеводов с пищей не обеспечивает постоянного и равномерного притока глюкозы из ки­шечника в кровь, в организме существуют механизмы, восполня­ющие убыль глюкозы из крови в количествах, эквивалентных ее потреблению тканями. Механизмы с другой направленностью дей­ствия обеспечивают в нормальных условиях превращение глюкозы в запасаемую форму - гликоген. При уровне более 1,8 г в литре крови происходит выведение ее из организма с мочой.

Избыток глюкозы, всосавшейся из кишечника в кровь воротной вены, поглощается гепатоцитами. При повышении в них концент-

Рис. 10.3 Система регуляции уровня глюкозы в крови (Пояснения в тексте)

рации глюкозы активируется ферменты углеводного обмена печени, превращающие глюкозу в гликоген. В ответ на повышение уровня сахара в крови, протекающей через поджелудочную железу, возрас­тает секреторная активность В -клеток островков Лангерганса. В кровь выделяется большее количество инсулина - единственного гормона, обладающего резким понижающим концентрацию сахара в крови действием. Под влиянием инсулина повышается проница­емость для глюкозы плазматических мембран клеток мышечной жировой тканей. Инсулин активирует в печени и мышцах процессы превращения глюкозы в гликоген, улучшает ее поглощение и усво­ение скелетными, гладкими и сердечной мышцами. Под влиянием инсулина в клетках жировой ткани из глюкозы синтезируются жиры. Одновременно, выделяющийся в больших количествах инсулин тор­мозит распад гликогена печени и глюконеогенез.

Содержание глюкозы в крови оценивается глюкорецепторами пе­реднего гипоталамуса, а также его полисенсорными нейронами. В ответ на повышении уровня глюкозы в крови выше "заданного значения" (>1,2 г/л) повышается активность нейронов гипоталамуса, которые посредством влияния парасимпатической нервной системы на поджелудочную железу усиливают секрецию инсулина.

При понижении уровня глюкозы в крови уменьшается ее погло­щение гепатоцитами. В поджелудочной железе снижается секретор­ная активность В -клеток, уменьшается секреция инсулина. Тормо­зятся процессы превращения глюкозы в гликоген в печени и мыш­цах, уменьшается поглощение и усвоение глюкозы скелетными и гладкими мышцами, жировыми клетками. При участии этих меха­низмов замедляется или предотвращается дальнейшее понижение уровня глюкозы в крови, которое могло бы привести к развитию гипогликемии.

При уменьшении концентрации глюкозы в крови имеет место повышении тонуса симпатической нервной системы. Под ее влия­нием усиливается секреция в мозговом веществе надпочечников адреналина и норадреналина. Адреналин, стимулируя распад глико­гена в печени и мышцах вызывает повышение концентрации сахара в крови. По этому свойству адреналин является наиболее важным антагонистом инсулина среди других гормонов системы регуляции уровня сахара в крови. Например, норадреналин обладает слабовы-раженной способностью повышать уровень глюкозы в крови.

Под влиянием симпатической нервной системы стимулируется выработка а-клетками поджелудочной железы глюкагона, который активирует распад гликогена печени, стимулирует глюконеогенез и приводит к повышению уровня глюкозы в крови.

Понижение в крови концентрации глюкозы, являющейся для ор­ганизма одним из наиболее важных энергетических субстратов, вы­зывает развитие стресса. В ответ на снижение уровня сахара крови глюкорецепторные нейроны гипоталамуса через рилизинг-гормоны стимулируют секрецию гипофизом в кровь гормона роста и адрено-кортикотропного гормона. Под влиянием гормона роста уменьшается проницаемость клеточных мембран для глюкозы, усиливается глю-

конеогенез, активируется секреция глюкагона, в результате чего уровень сахара в крови увеличивается. Гормон роста оказывает анаболические эффекты на обмен белков и жиров. Под его влия­нием увеличивается содержание белка, снижается количество экс-кретируемого азота, увеличивается концентрация в плазме свободных жирных кислот.

Секретируемые под действием адренокортикотропного гормона в коре надпочечников глкжокортикоиды активируют ферменты глюко-неогенеза в печени и этим способствуют увеличению содержания сахара в крови. Одновременно под действием глкжокортикоидов уменьшается включение аминокислот в белки и увеличивается ско­рость выведения из организма азота. Глкжокортикоиды повышают эффективность липолиза в жировой ткани и мобилизации в кровь свободных жирных кислот.

Регуляция обмена веществ и энергии в целостном организме находится под контролем нервной системы и ее высших отделов. Об этом свидетельствуют факты условнорефлекторного изменения ин­тенсивности метаболизма у спортсменов в предстартовом состоянии, у рабочих перед началом выполнения тяжелой физической работы, у водолазов перед их погружением в воду. В этих случаях увели­чивается скорость потребления организмом кислорода, возрастает минутный объем дыхания, минутный объем кровотока, усиливается энергообмен.

Развивающееся при снижении в крови содержания глюкозы, сво­бодных жирных кислот, аминокислот чувство голода обусловливает поведенческую реакцию, направленную на поиск и прием пищи и восполнение в организме питательных веществ.

В регуляции обмена веществ и энергии выделяют регуляцию обмена организма веществами и энергией с окружающей средой и регуляцию метаболизма в самом организме.

Конечной целью регуляции обмена веществ и энергии является удовлетворение в соответствии с уровнем функциональной активности потребностей целостного организма, его органов, тканей и отдельных клеток в энергии и разнообразных пластических веществах.

Регуляция обмена веществ и энергии - это мультипараметрическая регуляция, включающая в себя регулирующие системы множества функций организма (например, дыхания, кровообращения, выделения, теплообмена и др.).

Роль центра в регуляции обмена веществ и энергии играет гипоталамус. Это обусловлено тем, что в гипоталамусе локализованы нервные ядра и центры, имеющие непосредственное отношение к регуляции голода и насыщения, теплообмена, осморегуляции. В гипоталамусе идентифицированы полисенсорные нейроны, реагирующие сдвигами функциональной активности на изменения концентрации глюкозы, водородных ионов, температуры тела, осмотического давления, т.е. важнейших гомеостатических констант внутренней среды организма. В ядрах гипоталамуса осуществляется анализ состояния внутренней среды организма и формируются управляющие сигналы, которые посредством эфферентных систем приспосабливают ход метаболизма к потребностям организма.

Под управляющим влиянием гипоталамуса находится и используется в качестве эфферентной системы регуляции обмена веществ и энергии - эндокринная система. Гормоны гипоталамуса, гипофиза и других эндокринных желез оказывают прямое влияние на рост, размножение, дифференцировку, развитие и другие функции клеток. Гормоны принимают участие в поддержании в крови необходимого уровня таких веществ, как глюкоза, свободные жировые кислоты, минеральные ионы.

Тепловой обмен

Высвобождающаяся в организме при биологическом окислении энергия питательных веществ превращается в тепло, которое при его накоплении в тканях ведет к повышению температуры тела. Скорость биологического окисления возрастает при увеличении температуры. Чем интенсивнее протекание, обменных процессов, тем больше теплообразование в организме. Но несмотря на такую взаимозависимость обменных процессов и теплообразования самоускорения обмена и прироста температуры тела не происходит. Это объясняется тем, что прирост температуры тела над уровнем температуры окружающей среды сопровождается увеличением отдачи тепла и, следовательно, ограничением влияния температуры на обменные процессы.

Живые организмы подразделяют на гомойотермные (теплокровные) и пойкилотермные (холоднокровные), в зависимости от скорости обменных процессов, способности поддерживать постоянную температуру тела и уровень активности в широком диапазоне изменений температуры окружающей среды.

Гомойотермные (человек и млекопитающие) организмы характеризуются установленной на определенном уровне температурой тела и способностью сохранять постоянство температуры тела в пределах ± 2 °С, несмотря на изменения температуры внешней среды. Их отличает от пойкилотермных организмов, близких по массе и температуре тела, в несколько раз более высокий уровень энергетического обмена. Для теплокровных организмов характерен относительно независящий от изменений температуры окружающей среды уровень активности. Гомойотермные (человек и животные) являются также эндотермными, так как температура их тела определяется интенсивностью теплообразования за счет обменных процессов, протекающих внутри организма.

Пойкилотермные (холоднокровные) организмы не способны поддерживать на постоянном, фиксированном уровне температуру тела при изменении температуры окружающей среды. Для них характерен более низкий по сравнению с теплокровными организмами уровень энергетического обмена. Интенсивность энергетических превращений и уровень активности холоднокровных организмов зависит от величины температуры среды их существования.

Главным условием поддержания/постоянной температуры тела, в том числе и температуры человеческого организма, является достижение устойчивого баланса теплопродукции и теплоотдачи.



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Модный свадебный маникюр с видео и фото Модный свадебный маникюр с видео и фото Задержка развития речи и массаж Массаж воротниковой зоны развития речи Задержка развития речи и массаж Массаж воротниковой зоны развития речи Рубцы на лице после прыщей — как избавиться: кремы, мази, аптечные средства, маски, косметические и медицинские методы Рубцы на лице после прыщей — как избавиться: кремы, мази, аптечные средства, маски, косметические и медицинские методы