Случайные процессы и их описание. Определение и классификация случайных процессов

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Широкое практическое использование при исследовании состояния разных технических объектов получили три типа случайных процессов - гауссовский, стационарный и марковский.

Гауссовский случайный процесс - это случайный процесс X(t), распределение вероятностей параметров которого подчиняется нормальному закону. Математическое ожидание (среднее значение)М[Х(t)] и корреляционная функция K х (t 1 ,t 2) однозначно определяют распределение его параметров, следовательно, и процесс в целом.

Стационарный случайный процесс (однородный во времени случайный процесс) - это такой случайный процесс X(t), статистические характеристики которого постоянны во времени, то есть инвариантны к кратковременным возмущениям: t → t + τ, X(t) → X(t + τ) при любом фиксированном значении τ. Процесс полностью определяется математическим ожиданием M и корреляционной функцией

К х (t,τ) = M.

Марковский случайный процесс - это такой случайный процесс, при котором вероятность нахождения системы в каком-либо состоянии в будущем зависит от того, в каком состоянии система находится в заданный момент времени и не зависит от того, каким путем система перешла в это состояние. Короче - «будущее» и «прошлое» процесса при известном его «настоящем» не связаны друг с другом. Часто марковский процесс характеризуется вероятностями перехода системы из одного состояния в другое (переходными вероятностями).

Изменение технического состояния системы

Как уже говорилось, задача прогнозирования технического состояния, в самом общем понимании, представляет собой получение некоторых вероятностных характеристик работоспособности системы в будущем на основе данных контроля ее настоящего и прошедших состояний.

В зависимости от того, какая характеристика случайного процесса определяется при прогнозировании, различают прогнозирование надежности (определение условной плотности вероятности безотказной работы системы после контроля) и прогнозирование технического состояния (определение условной плотности распределения вероятностей значений определяющего параметра) на основе прошлых и настоящего состояний. На рис 8.1 проиллюстрирована разница между этими характеристиками. На этом рисунке x(t) - отрезок реализации случайного процесса X(t), описывающий изменение во времени некоторого определяющего параметра системы, имеющего допустимые границы (а, b) изменения. Отрезок реализации получен в результате наблюдения за конкретным экземпляром системы из заданного класса систем на интервале времени (0, t k 2). В момент t k 2 был осуществлен последний контроль системы, и на его основе необходимо решить - пригодна ли система к эксплуатации до наступления очередного момента контроля t k 3 .



рис. 8.1 Условная плотность вероятности безотказной работы р{x(t)} и f{(x(t)} условная плотность распределения вероятностей значений определяющего параметра

В связи с тем, что внешние воздействия, воспринимаемые системой, имеют случайный характер, случайный процесс после момента t k 2 может изменяться по разному (см. пунктирные линии на рис. 8.1). Процесс, являющийся продолжением некоторого исходного процесса при условии, что на интервале (0,t k 2) его реализация имела конкретный вид х(t), называется условным , или апостериорным , случайным процессом:

Х ps (t)=x. (8.5)

Следовательно, для принятия обоснованного решения о назначении срока очередного контроля системы необходимо знать характеристики апостериорного случайного процесса. Пригодной для выполнения задачи будет считаться система, определяющие параметры которой находятся в допустимых границах (а, b) в момент предыдущего контроля и не выйдут из этих границ до конца заданного срока функционирования. Поскольку выход определяющих параметров за допустимые границы является случайным событием, то оценкой работоспособности системы может быть условная вероятность безотказной ее работы после контроля. Это вероятность того, что случайный процесс ни разу не пересечет границу (a, b) после момента контроля; ее называют прогнозированной надежностью системы и обозначают

P{x(t)=<<(ba)/X(t)=x(t), 0<

Таким образом, прогнозированием надежности называется определение условной вероятности безотказной работы системы при условии, что в момент контроля она находилась в некотором фиксированном работоспособном состоянии.

Наиболее полной характеристикой будущего технического состояния системы является условная плотность распределения вероятностей ее определяющих параметров, то есть будущих значений случайного процесса

f{x(t k 3)/X(t)=x(t), 0<

при условии, что на интервале (0,t k 3) реализация процесса имела конкретный вид (рис. 8.1).

Прежде чем дать определение случайного процесса напомним основные понятия из теории случайных величин. Как известно, случайной величиной называется величина, которая в результате опыта может принять то или иное значение, заранее неизвестное. Различают дискретные и непрерывные случайные величины. Основной характеристикой случайной величины является закон распределения, который может быть задан в виде графика или в аналитической форме. При интегральном законе распределения функция распределения , где – вероятность того, что текущее значение случайной величины меньше некоторого значения . При дифференциальном законе распределения используют плотность вероятности . Численными характеристиками случайных величин являются так называемые моменты, из которых наиболее употребительны момент первого порядка – среднее значение (математическое ожидание) случайной величины и центральный момент второго порядка – дисперсия. В случае, если имеется несколько случайных величин (система случайных величин), вводится понятие корреляционного момента.

Обобщением понятия случайной величины является понятие случайной функции , т.е. функции, которая в результате опыта может принять тот или иной вид, неизвестный заранее. Если аргументом функции является время t, то её называют случайным или стохастическим процессом .

Конкретный вид случайного процесса, полученный в результате опыта, называется реализацией случайного процесса и является обычной неслучайной (детерминированной) функцией. С другой стороны в фиксированный момент времени имеем так называемое сечение случайного процесса в виде случайной величины.

Для описания случайных процессов обобщаются естественным образом понятия теории случайных величин. Для некоторого фиксированного момента времени , случайный процесс превращается в случайную величину , для которой можно ввести функцию , называемую одномерным законом распределения случайного процесса . Одномерный закон распределения не является исчерпывающей характеристикой случайного процесса. Он, например, не характеризует корреляцию (связь) между отдельными сечениями случайного процесса. Если взять два разных момента времени и , можно ввести двумерный закон распределения и т.д. В пределах нашего дальнейшего рассмотрения будем ограничиваться в основном одномерным и двумерным законами.

Рассмотрим простейшие характеристики случайного процесса, аналогичные числовым характеристикам случайной величины. Математическое ожидание или среднее по множеству

и дисперсию

Математическое ожидание – это некоторая средняя кривая, вокруг которой группируются отдельные реализации случайного процесса, а дисперсия характеризует в каждый момент времени разброс возможных реализаций. Иногда, используется среднеквадратичное отклонение .

Для характеристики внутренней структуры случайного процесса вводится понятие корреляционной (автокорреляционной ) функции

Наряду с математическим ожиданием (среднее по множеству) (3.1) вводится ещё одна характеристика случайного процесса – среднее значение случайного процесса для отдельной реализации (среднее по времени)

Для двух случайных процессов можно также ввести понятие взаимной корреляционной функции по аналогии с (3.3).

Одним из частных случаев случайного процесса, находящих широкое применение на практике, является стационарный случайный процесс – это случайный процесс, вероятностные характеристики, которого не зависят от времени. Итак, для стационарного случайного процесса , , а корреляционная функция зависит от разности , т.е. является функцией одного аргумента .

Стационарный случайный процесс в какой-то мере аналогичен обычным или установившимся процессам в системах управления.

Стационарные случайные процессы обладают интересным свойством, которое называется эргодической гипотезой . Для стационарного случайного процесса всякое среднее по множеству равно среднему по времени. В частности, например, Это свойство позволяет часто упростить физическое и математическое моделирование систем при случайных воздействиях.

Как известно, при анализе детерминированных сигналов широкое применение находят их спектральные характеристики на базе ряда или интеграла Фурье. Аналогичное понятие можно ввести и для случайных стационарных процессов. Отличие будет заключаться в том, что для случайного процесса амплитуды гармонических составляющих будут случайными, а спектр статического случайного процесса будет описывать распределение дисперсий по различным частотам.

Спектральная плотность стационарного случайного процесса связана с его корреляционной функцией преобразованиями Фурье :

где корреляционную функцию будем трактовать как оригинал, а - как изображение.

Существуют таблицы, связывающие оригиналы и изображения . Например, если , то .

Отметим связь спектральной плотности и корреляционной функции с дисперсией D

Применение общих определений, приведенных в предыдущем параграфе, иллюстрируется ниже на нескольких характерных случайных процессах.

Наряду с обозначением случайного процесса символом будет применяться в том же смысле обозначение под которым подразумевается случайная функция времени. Как и ранее, обозначает реализацию случайной функции

1. ГАРМОНИЧЕСКОЕ КОЛЕБАНИЕ СО СЛУЧАЙНОЙ АМПЛИТУДОЙ

Пусть в выражении, определяющем сигнал

частота и начальная фаза являются детерминированными и постоянными величинами, а амплитуда А - случайная, равновероятная в интервале от 0 до величина (рис. 4.2).

Найдем одномерную плотность вероятности для фиксированного момента времени . Мгновенное значение может быть любым в интервале от 0 до причем будем считать, что . Следовательно,

Рис. 4.2. Совокупность гармонических колебаний со случайной амплитудой

Рис. 4.3. Плотность вероятности гармонического колебания со случайной амплитудой

График функции для фиксированного значения представлен на рис. 4.3.

Математическое ожиданир

Наконец, дисперсия

Рассматриваемый случайный процесс нестационарный и неэргодический.

2. ГАРМОНИЧЕСКОЕ КОЛЕБАНИЕ СО СЛУЧАЙНОЙ ФАЗОЙ

Пусть амплитуда и частота гармонического сигнала заранее достоверно известны, а начальная фаза - случайная величина, которая с одинаковой вероятностью может принимать любое значение в интервале от до . Это означает, что плотность вероятности начальной фазы

Рис. 4.4. Совокупность гармонических колебаний со случайными фазами

Одну из реализаций случайного процесса образуемого совокупностью гармонических колебаний со случайными фазами (рис. 4.4), можно определить выражением

(4.23)

Полная фаза колебания является случайной величиной, равновероятной в интервале от до . Следовательно,

Рис. 4.5. К определению плотности вероятности гармонического колебания со случайной фазой

Рис. 4.6. Плотность вероятности гармонического колебания со случайной фазой

Найдем одномерную плотность вероятности случайного процесса . Выделим интервал (рис. 4.5) и определим вероятность того, что при измерении, проведенном в промежутке времени от до мгновенное значение сигнала окажется в интервале Эту вероятность можно записать в виде , где - искомая плотность вероятности. Очевидно, что вероятность совпадает с вероятностью попадания случайной фазы колебаний в один из двух заштрихованных на рис. 4.5 фазовых интервалов. Эта последняя вероятность равна Следовательно,

откуда искомая функция

Таким образом, окончательно

График этой функции изображен на рис. 4.6.

Существенно, что одномерная плотность вероятности не зависит от выбора момента времени t, а среднее по множеству (см. (2.271.7) в )

совпадает со средним по времени

(Это справедливо для любой реализации рассматриваемого случайного процесса.)

Корреляционную функцию в данном случае можно получить усреднением произведения по множеству без обращения к двумерной плотности вероятности [см. общее выражение (4.8)]. Подставляя в (4.8)

а также учитывая, что первое слагаемое является детерминированной величиной, а второе слагаемое при статистическом усреднении с помощью одномерной плотности вероятности [см. (4.22)] обращается в нуль, получаем

Такой же результат получается и при усреднении произведения по времени для любой реализации процесса.

Независимость среднего значения от и корреляционной функции от положения интервала - на оси времени позволяет считать рассматриваемый процесс стационарным. Совпадение же результатов усреднения по множеству и времени (для любой реализации) указывает на эргодичность процесса. Аналогичным образом нетрудно показать, что гармоническое колебание со случайной амплитудой и случайной фазой образует стационарный, но не эргодический процесс (различные реализации обладают неодинаковой дисперсией).

3. ГАУССОВСКИЙ СЛУЧАЙНЫЙ ПРОЦЕСС

Нормальный (гауссовский) закон распределения случайных величин чаще других встречается в природе. Нормальный процесс особенно характерен для помех канала связи. Он очень удобен для анализа. Поэтому случайные процессы, распределение которых не слишком сильно отличается от нормального, часто заменяют гауссовским процессом. Одномерная плотность вероятности нормального процесса определяется выражением

В данном параграфе рассматривается стационарный и эргодический гауссовский процесс. Поэтому под можно подразумевать соответственно постоянную составляющую и среднюю мощность флуктуационной составляющей одной (достаточно длительной) реализации случайного процесса.

Графики плотности вероятности при нормальном законе для некоторых значений изображены на рис. 4.7. Функция симметрична относительно среднего значения. Чем больше тем меньше максимум, а кривая становится более пологой [площадь под кривой равна единице при любых значениях ].

Широкое распространение нормального закона распределения в природе объясняется тем, что при суммировании достаточно большого числа независимых или слабо зависимых случайных величин распределение суммы близко к нормальному при любом распределении отдельных слагаемых.

Это положение, сформулированное в 1901 г. А. М. Ляпуновым, получило название центральной предельной теоремы.

Наглядными физическими примерами случайного процесса с нормальным законом распределения являются шумы, обусловленные тепловым движением свободных электронов в проводниках электрической цепи как дробовым эффектом в электронных приборах (см. § 7.3.).

Рис. 4.7. Одномерная плотность вероятности нормального распределения

Рис. 4.8. Случайные функции с одинаковым распределением (нормальным), но с различными частотными спектрами

Не только шумы и помехи, но и полезные сигналы, являющиеся суммой большого числа незавнси случайных элементарных сигналов, например гармонических колебаний со случайной фазой или амплитудой, часто можно трактовать гауссовские случайные процессы.

На основе функции можно найти относительное время пребывания сигнала в определенном интервале уровней, отношение максимальных значений к среднеквадратическому (пикфактор) и ряд других важных для практики параметров случайного сигнала. Поясним это на примере одной из реализаций гауссовского процесса, изображенной на рис. 4.8, а для Эта функция времени соответствует шумовой помехе, энергетический спектр которой простирается от нулевой частоты до некоторой граничной частоты. Вероятность пребывания значения х(t) в интервале от а до b определяется выражением (4.1). Подставляя в это выражение (4.28), при получаем

Если некоторая переменная х зависит от скалярного ар­гумента t и при каждом фиксированном значении последнего явля­ется случайной величиной, то переменную х(t) называют случайной функцией.

Если аргументом t у переменной x(t) является время, то такую случайную функцию называют случайным процессом. Например, угол тангажа летательного аппарата, движущегося в турбу­лентной атмосфере, является случайным процессом.

Если х -вектор, то зависимость x(t) -векторный случайный процесс. Например, движение центра масс летательного аппарата по траектории характеризуется шестимерным вектором x(t) = {х, у, z, V x , V y , V z }. Если движение аппарата происходит при действии случайных факторов, то x(t) -векторный случайный процесс.

В отдельных опытах наблюдаются реализации x i (t), i-1, 2, ... случайного процесса x(t); i - номер реализации.

Статистическое описание случайного процесса x(t) осуществля­ют, рассматривая множество случайных величин x 1 = x(t 1), ..., x i = x(t i), соответствующих различным значениям времени t, взятым на рассматриваемом интервале его изменения . Считается, что произвольный случайный процесс x(t) описан полностью, если указан способ построения последовательности плотностей вероят­ности р(х, t); p(x 1 , t; x 2 , t 2); ...; р(x 1 , t 1 ; ...; х п, t n) при , где .

Одномерная плотность р(х, t) позволяет определить вероятность попадания случайной величины x(t) в интервал :

С помощью двумерной совместной плотности оп­ределяют, с какой вероятностью две случайные величины х 1 и х 2 по­падут в интервалы и , соответствующие моментам t 1 и t 2:

и так для любого п.

Для описания случайных процессов могут также использоваться условные плотности распределения вероятностей. Условная плот­ность вероятности характеризует распределение веро­ятностей случайной величины , реализации которой в мо­мент прошли через точку . Аналогично условная плотность есть плотность распределе­ния вероятностей случайной величины x n = x(t n), реализации кото­рой в предшествующие моменты принимали фиксирован­ные значения . С учетом формулы (1.7) справедливы следующие соотношения между сов­местными безусловными и условными распределениями:

Имеют место следующие предельные свойства безусловных и условных распределений:

где -дельта-функция в точке Х 1 .

В другом предельном случае

Классификацию случайных процессов осуществляют в зависи­мости от тех свойств, которыми обладают их совместные безуслов­ные и условные распределения.

Абсолютно случайный процесс. Процесс x(t) называют абсо­лютно случайным, если случайные величины и независимы при сколь угодно малом . Учитывая (1.10), для такого процесса получим, что совместное n-мерное распределе­ние при любом п. определяется соотношением


т. е. абсолютно случайный процесс полностью описывается его одно­мерным распределением р(х, I), известным для каждого t.

Марковский процесс. Зададим на интервале возможного изменения аргумента t случайного процесса x(t) временной ряд . Случайный процесс x(t) называют марковским, если для него справедливо соотношение для любых .

Для марковского процесса условная плотность вероятности слу­чайной величины зависит только от того, каким было зна­чение случайной величины и никак не зависит от того, каким были реализации данного процесса в предыдущие моменты . Плотность называют также переходной плотностью вероятности марковского процесса x(t). Для марковского процесса x(t), учитывая (1.34) и (1.40), имеем определяется предыдущим значением и приращением на этом интервале, не зависящим от приращений на предшествующих интервалах.

Гауссовский случайный процесс. Случайный процесс x(t), у ко­торого совместная n-мерная плотность вероятности при любом п и любых является гауссовской, называется гауссовским случайным процессом.

1. ПОНЯТИЕ СЛУЧАЙНОЙ ФУНКЦИИ

До определенных пор теория вероятностей ограничивалась понятием случайных величин. Их использование позволяет выполнять статические расчеты, учитывающие случайные факторы. Однако механические системы подвергаются также разнообразным динамическим, то есть изменяющимся во времени воздействиям случайного характера. К ним относятся, в частности, вибрационные и ударные воздействия при движении транспортных средств, аэродинамические силы, вызванные атмосферной турбулентностью, сейсмические силы, нагрузки, обусловленные случайными отклонениями от номинальных режимов работы машин.

Случайные динамические явления изучаются при анализе тенденций в экономике (например, изменения курса акций или валюты). Работа в условиях случайных возмущений характерна для систем управления разнообразными динамическими объектами.

Для анализа подобных явлений используется понятие случайной функции . Случайной функцией X (t ) называется такая функция аргумента t , значение которой при любом t является случайной величиной. Если аргумент принимает дискретные значения t 1 , t 2 , …, t k то говорят о случайной последовательности X 1 , X 2 ,…, X k , где X i = X (t i ).

Во многих практических задачах неслучайный аргумент t имеет смысл времени, при этом случайную функцию называют случайным процессом , а случайную последовательность – временным рядом . Вместе с тем, аргумент случайной функции может иметь и иной смысл. Например, речь может идти о рельефе местности Z (x , y ), где аргументами являются координаты местности x и y , а роль случайной функции играет высота над уровнем моря z. В дальнейшем, для определенности, имея в виду приложения случайных функций к исследованию динамических систем, будем говорить о случайных процессах.

Предположим, что при исследовании случайного процесса X (t ) произведено n независимых опытов, и получены реализации

представляющие собой n детерминированных функций. Соответствующее семейство кривых в определенной мере характеризует свойства случайного процесса. Так, на рис.1.1а представлены реализации случайного процесса с постоянными средним уровнем и разбросом значений возле среднего, на рис. 1.1б – реализации случайного процесса с постоянным средним и изменяющимся разбросом, на рис. 1.1в – реализации случайного процесса с изменяющимися во времени средним и разбросом.



Рис.1.1. Типичные реализации случайных процессов

На рис. 1.2 показаны реализации двух случайных процессов, имеющих одинаковый средний уровень и разброс, но различающихся плавностью. Реализации случайного процесса на рис. 1.2а имеют высокочастотный характер, а на рис. 1.2б – низкочастотный.

Рис. 1.2. Высокочастотный и низкочастотный случайные процессы

Таким образом, X (t ) можно рассматривать и как совокупность всевозможных реализаций, которая подчиняется определенным вероятностным закономерностям. Как и для случайных величин, исчерпывающую характеристику этих закономерностей дают функции или плотности распределения. Случайный процесс считается заданным, если заданы все многомерные законы распределения случайных величин X (t i ), X (t 2 ), …, X (t n ) для любых значений t 1 , t 2 , …, t n из области изменения аргумента t . Речь идет, в частности, об одномерной плотности распределения , двумерной плотности распределения и т.д. .

Для упрощения анализа в большинстве случаев ограничиваются моментными характеристиками, причем чаще всего используют моменты первого и второго порядков. Для характеристики среднего уровня случайного процесса служит математическое ожидание

. (1.1)

Для характеристики амплитуды отклонений случайного процесса от среднего уровня служит дисперсия

Для характеристики изменчивости (плавности) случайного процесса служит корреляционная (автокорреляционная) функция

(1.3)

Как следует из (1.3), корреляционная функция представляет собой ковариацию случайных величин X (t 1) и X (t 2). Ковариация же, как известно из курса теории вероятностей, характеризует взаимозависимость между X (t 1) и X (t 2).

В рамках корреляционной теории случайных функций, которая оперирует лишь моментами первого и второго порядков, могут быть решены многие технические задачи. В частности, могут быть определены априорная, а также условная вероятности выхода случайного процесса за пределы заданных границ. Вместе с тем, некоторые важные в практическом плане задачи не решаются средствами корреляционной теории и требуют использования многомерных плотностей распределения. К таким задачам относится, например, расчет среднего времени нахождения случайного процесса выше или ниже заданной границы.

2. ТИПЫ СЛУЧАЙНЫХ ПРОЦЕССОВ

2.1. Квазидетерминированные случайные процессы



Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Ювелирные украшения и бижутерия в стиле ар-деко Украшения в стиле арт деко бусы Ювелирные украшения и бижутерия в стиле ар-деко Украшения в стиле арт деко бусы Ажурное платье спицами, подборка интересных моделей Ажурное платье спицами, подборка интересных моделей Женские стрижки для квадратного лица Женские стрижки для квадратного лица