Визуально-двойные звезды. Глава iii

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Звезды на небесном теле существуют в виде скоплений, ассоциаций, а не как единичные тела. Звездные скопления могут быть усеяны звездами очень густо или нет.
Между звездами могут существовать и более тесные связи, речь идет о двойных звездах, или о двойных системах, как их называют астрономы. В паре звезд эволюция одной непосредственно влияет и на вторую.

Открытие

Открытие двойных звезд, в настоящее время их именно так называют, стало одним из первых открытий, осуществленных при помощи астрономического бинокля. Первой парой этого типа звезд стала Мицар из созвездий Большой Медведицы. Открытие сделал итальянский астроном Риччоли. Учитывая огромное количество звезд во Вселенной, ученые пришли к выводу, что Мицар среди них не единственная двойная система, и оказались правы, вскоре наблюдения подтвердили эту гипотезу. В 1804 г. известный астроном Вильям Гершель, посвятивший 24 года научным наблюдениям, опубликовал каталог, содержащий описание примерно 700 двойных звезд. Вначале ученые не знали точно, связаны ли физически друг с другом компоненты двойной системы.

Некоторые светлые умы полагали, что на двойные звезды действует звездная ассоциация в целом, тем более в паре блеск составляющих был неодинаков. В связи с этим создавалось впечатление, что они находятся не рядом. Для выяснения истинного положения дел было необходимо измерить параллактические смещения звезд. Этим и занялся Гершель. К величайшему удивлению, параллактическое смещение одной звезды по отношению к другой при измерении дало неожиданный результат. Гершель заметил, что вместо симметрического колебания с периодом в 6 месяцев каждая звезда следует по сложному эллипсоидному пути. В соответствии с законами небесной механики два тела, связанных силой притяжения, двигаются по эллиптической орбите. Наблюдения Гершеля подтвердили тезис о том, что двойные звезды связанны физически, т.е. силами тяготения.

Классификация двойных звезд

Различают три основных класса двойных звезд: визуально-двойные, двойные фотометрические и спектрально-двойственные. Эта классификация не отражает в полной мере внутренние различия классов, но дает представление о звездной ассоциации.

Двойственность визуально-двойных звезд хорошо видна в телескопе по мере их движения. В настоящее время идентифицировано около 70 000 визуально-двойных звезд, но только у 1% из них была точно определена орбита.

Такая цифра (1%) не должна удивлять. Дело в том, что орбитальные периоды могут составлять несколько десятков лет, если не целые века. А выстроить путь по орбите – очень кропотливый труд, требующий проведения многочисленных расчетов и наблюдений из разных обсерваторий. Очень часто ученые располагают лишь фрагментами движения по орбите, остальной путь они восстанавливают дедуктивным методом, используя имеющиеся данные. Следует иметь в виду, что орбитальная плоскость системы может быть наклонена к лучу зрения. В таком случае воссозданная орбита (видимая) будет значительно отличаться от истинной. Разумеется, если расчеты были проведены с большой точностью, можно вычислить истинную орбиту системы двойных звезд, используя первые два закона Кеплера.

Если определена истинная орбита, известны период обращения и угловое расстояние между двумя звездами, можно, применив третий закон Кеплера, определить сумму масс компонентов системы. Расстояние двойной звезды до нас при этом тоже должно быть известно.

Двойные фотометрические звезды

О двойственности этой системы звезд можно судить лишь по периодическим колебаниям блеска. При движении такие звезды попеременно загораживают (затмевают) друг друга. Их также называют “затменно – двойные звезды”. У этих звезд плоскости орбит близки к направлению луча зрения. Чем большую площадь занимает затмение, тем более выражен блеск. Если проанализировать кривую блеска двойных фотометрических звезд, можно определить наклон орбитальной плоскости.

С помощью кривой блеска можно определить и орбитальный период системы. Если зафиксированы, например, два затмения, кривая блеска будет иметь два снижения (минимума). Период времени, за который фиксируются три последовательных снижения по кривой блеска, соответствует орбитальному периоду.

Периоды двойных фотометрических звезд значительно короче по сравнению с периодами визуально – двойных звезд и составляют срок несколько часов или несколько дней.

Спектрально-двойственные звезды

С помощью спектроскопии можно подметить расщепление спектральных линий вследствие эффекта Доплера. Если один из компонентов представляет собой слабую звезду, то наблюдается только периодическое колебание положений одиночных линий. Этот способ используют в случае, когда компоненты двойной звезды очень близки между собой и их сложно идентифицировать при помощи телескопа как визуально двойные звезды. Двойные звезды, определяемые с помощью спектроскопа и эффекта Доплера, называются спектрально – двойственными. Не все двойные звезды являются спектральными. Два компонента двойных звезд могут отдаляться и приближаться в радиальном направлении.

Наблюдения свидетельствуют о том, что двойные звезды встречаются в основном в нашей Галактике. Сложно определить процентное соотношение двойных и одинарных звезд. Если действовать методом вычитания и из всего звездного населения вычесть число идентифицированных двойных звезд, можно сделать вывод, что они составляют меньшинство. Этот вывод может быть ошибочным. В астрономии есть понятие “эффект отбора”. Для определения двойственности звезд надо идентифицировать их основные характеристики. Для этого необходимо хорошее оборудование. Иногда бывает сложно определить двойные звезды. Например, визуально двойные звезды не всегда можно увидеть на большом удалении от наблюдателя. Иногда угловое расстояние между компонентами не фиксируется телескопом. Для того чтобы зафиксировать фотометрические и спектрально-двойственные звезды, их блеск должен быть достаточно сильным для сбора модуляций светового потока и тщательного измерения длины волн в спектральных линиях.

Число звезд, подходящих по всем параметрам для исследований, не так велико.

По данным теоретических разработок, можно предположить, что двойственные звезды составляют от 30 до 70% звездного населения.


Двойные звёзды (физические двойные)

- две звезды, объединённые силами тяготения и обращающиеся по эллиптическим (в частном случае - круговым) орбитам вокруг общего центра масс. Существуют также кратные физ. звёзды - тройные, четверные и т.д., но число их существенно меньше физ. Д. з. Если компоненты физ. Д. з. можно разглядеть непосредственно в телескоп или на фотографиях (получаемых для этой цели при помощи длиннофокусных астрографов), то её наз. визуально-двойной звездой. Тесные Д. з., двойственность к-рых не удаётся обнаружить даже в самые крупные телескопы, могут оказаться спектрально-двойными либо затменно-двойными (иначе - затменными переменными, см. ). Первые проявляют свою двойственность периодич. колебаниями или раздвоениями спектр. линий, вторые - периодич. изменениями суммарного блеска звёзд. В нек-рых случаях можно установить двойственность методами , или путём скоростной регистрации покрытий звёзд Луной (фотометрич. кривые изменения блеска одиночной и двойной звёзд оказываются различными). К Д. з. относят также: астрометрические Д.з., обладающие тёмными спутниками (среди близких к Солнцу звёзд обнаружено ок. 20 астрометрических Д. з.); звёзды со сложными спектрами (сочетаниями двух различных спектров); широкие пары - звёзды с большим общим собств. движением (т.е. с большим угловым перемещением звезды по небесной сфере, выражаемым в секундах дуги в год). В пространстве компоненты могут быть разделены десятками тысяч а.е., а периоды обращения могут достигать неск. млн. лет. Фотометрическими Д. з. иногда наз. также двойные (кратные) системы, кратность к-рых выявляется методами многоцветной фотометрии звёзд на основе сопоставления её на двухцветных (многоцветных) диаграммах (см. ).

Относит. число известных двойных (и кратных) звёзд неуклонно увеличивается; в настоящее время считают, что большая часть (возможно, больше 70%) звёзд объединена в системы большей или меньшей кратности; из числа известных Д. з. около 1/3 оказываются тройными или звёздами большей кратности. Известны шести- и семикратные звёзды.

Большой интерес представляют Д. з., в состав к-рых входят физ. переменные звёзды (напр., ), и, возможно, т.к. в этом случае удаётся оценить массы этих объектов.

При наблюдениях визуально-двойной звезды измеряют расстояние между компонентами и позиционный угол линии центров, иначе говоря, угол между направлением на северный полюс мира и направлением линии, соединяющей главную (более яркую) звезду с её спутником (рис. 1). Многолетние наблюдения могут обнаружить криволинейность траектории относительного движения спутника и дать возможность оценить периоды обращения.

Число открытых визуально-двойных звёзд (включая широкие пары) превышает 60 тыс. Из них лишь 10 тыс. измерялись более или менее регулярно. У более 500 из них уже обнаружена кривизна пути, достаточная для того, чтобы пытаться определить форму относит. орбиты. Примерно для 150 Д. з. определены орбиты, т.е. по видимой траектории движения спутника вокруг главной звезды вычислены элементы истинной орбиты, указывающие форму и размеры орбиты, её пространств. ориентацию. По этим данным можно предвычислить положения спутника на орбите (рис. 2). Лишь орбиты 80 Д. з. можно считать определёнными достаточно надёжно, чтобы по ним пытаться определить массы звёзд - компонентов двойных. Применение третьего закона Кеплера к движению Д. з. с известными расстояниями до них даёт возможность (почти единственную) определить массы звёзд (см. ).

Изменения смещений или раздвоений спектр. линий спектрально-двойных звёзд позволяют определить , являющуюся проекцией орбитальной скорости на луч зрения (рис. 3). Кривые лучевых скоростей (рис. 4) - одного компонента или обоих, если спутник не слишком отличается по блеску от главной звезды и в спектре видны и могут быть измерены линии обоих компонентов, - дают возможность вычислить элементы истинной орбиты (яркого компонента вокруг общего центра масс, либо более слабого компонента вокруг яркого, помещаемого в фокус относит. орбиты, либо, наконец, каждого компонента относительно центра масс системы, рис. 5). Определённые периоды спектрально-двойных звёзд заключены в пределах от 0,1084 сут ( Малой Медведицы) до 59,8 лет (визуально Д. з. Большой Медведицы). Подавляющее большинство спектрально-двойных звёзд имеет периоды порядка неск. сут. Всего открыто более 3000 спектрально-двойных звёзд, приблизительно для 1000 из них вычислены элементы орбит.

Кривая блеска затменной Д. з. показывает периодич. уменьшения блеска - одно или два за период и постоянный блеск между минимумами (у звёзд типа Алголя) либо непрерывное его изменение (у звёзд типа Лиры или W Большой Медведицы, в последнем случае минимумы почти одинаковой глубины, см. ). Число открытых затменных Д. з. превышает 5 тыс.


Рис. 4. Влияние формы и ориентации орбиты на форму
кривой лучевой скорости: 1 - круговая орбита;
2 - эксцентриситет орбиты е =- 0,5, долгота периастра ;
3 - эксцентриситет орбиты е =0,5, ;
а, б, с, d - положения звезды-спутника и
соответствующие им значения лучевой скорости.

Анализ кривых даёт возможность определить не только элементы орбиты затменной Д. з., но и нек-рые характеристики самих компонентов (форму, размеры, выраженные либо в долях большой полуоси орбиты, либо в километрах, если дополнительно имеются измерения лучевых скоростей). Высокая точность совр. фотоэлектрич. измерений блеска в ряде случаев даёт возможность выявить и учесть влияние на кривую блеска т.н. тонких эффектов, напр. потемнения к краю диска звезды, а также количественно выразить степень отклонения формы компонентов от шаровой для очень тесных двойных (типов Лиры и W Большой Медведицы). При заметной эксцентричности орбиты возможно обнаружение эффекта вращения линии апсид (т.е. линии, соединяющей периастр и апоастр, см. ), что может быть связано с существованием третьего, ещё не обнаруженного компонента системы, либо с заметным отличием формы звёзд от шаровой вследствие приливной деформации близких компонентов. Если один из компонентов затменной Д. з. - горячая звезда , а другой - сверхгигант, обладающий протяжённой атмосферой, то можно очень детально изучить строение и состав атмосферы сверхгиганта по изменениям в спектре затменной, когда сквозь атмосферу сверхгиганта во время затмения будет просвечивать горячая звезда. Линии поглощения будут изменяться по мере "погружения" горячей звезды в более плотные слои протяжённой атмосферы сверхгиганта. Примерами таких пар явл. Возничего (период 27 лет, из к-рых затмение длится ок. 2 лет!) и Возничего (период 972 сут, затмение длится ок. 40 сут).

Двойная система из О-звёзд в представлении художника

Двойная звезда, или двойная система - система из двух гравитационно связанных , обращающихся по замкнутым орбитам вокруг общего центра масс. Двойные звёзды - весьма распространённые объекты. Примерно половина всех звёзд принадлежит к двойным системам.

Измерив период обращения и расстояние между звёздами, иногда можно определить массы компонентов системы. Этот метод практически не требует дополнительных модельных предположений, и поэтому является одним из главных методов определения масс в астрофизике. По этой причине двойные системы, компонентами которых являются или , представляют большой интерес для астрофизики.

Классификация

Физически двойные звезды можно разделить на два класса:

  • звёзды, между которыми обмен масс невозможен в принципе - разделенные двойные системы .
  • звёзды, между которыми идёт, будет идти или шёл обмен массами - тесные двойные системы . Их в свою очередь можно разделить на:
    • Полуразделенные, где только одна звезда заполняет свою полость Роша.
    • Контактные, где обе звезды заполняют свои полости Роша.

Двойные системы также классифицируются по способу наблюдения, можно выделить визуальные , спектральные , затменные , астрометрические двойные системы.

Визуально-двойные звёзды

Двойные звезды, которые возможно увидеть раздельно (или, как говорят, которые могут быть разрешены ), называются видимыми двойными , или визуально-двойными .

Возможность наблюдать звезду как визуально-двойную определяется разрешающей способностью телескопа, расстоянием до звёзд и расстоянием между ними. Таким образом, визуально-двойные звезды - это в основном звезды окрестностей с очень большим периодом обращения (следствие большого расстояния между компонентами). Из-за большого периода проследить орбиту двойной можно только по многочисленным наблюдениям на протяжении десятков лет. На сегодняшний день в каталогах WDS и CCDM свыше 78 000 и 110 000 объектов соответственно, и только у нескольких сотен из них можно вычислить орбиту. У менее чем сотни объектов орбита известна с достаточной точностью, для того чтобы получить массу компонентов.

При наблюдениях визуально-двойной звезды измеряют расстояние между компонентами и позиционный угол линии центров, иначе говоря, угол между направлением на северный полюс мира и направлением линии, соединяющей главную звезду с её спутником.

Спекл-интерферометрические двойные звезды

Спекл-интерферометрия, наряду с адаптивной оптикой позволяет достичь дифракционного предела разрешения звёзд, что в свою очередь позволяет обнаруживать двойные звезды. То есть по сути своей, спекл-интерферометрические двойные это те же самые визуально-двойные. Но если в классическом визуально-двойном методе необходимо получить два отдельных изображения, то в данном случае приходится анализировать спекл-интерферограммы.

Спекл-интерферометрия эффективна для двойных с периодом в несколько десятков лет.

Астрометрические двойные звёзды

Поведение астрометрическо-двойной на небе.

В случае визуально-двойных звёзд мы видим перемещение по небу сразу двух объектов. Однако, если представить себе, что один из двух компонентов нам не виден по тем или иным причинам, то двойственность все равно можно обнаружить по изменению положения на небе второго. В таком случае говорят об астрометрически-двойных звёздах.

Если наличествуют высокоточные астрометрические наблюдения, то двойственность можно предположить, зафиксировав нелийность движения: первую производную собственного движения и вторую. Астрометрические двойные звезды используются для измерения массы разных спектральных классов.

Спектрально-двойные звёзды

Условный пример раздвоения и смещения линий в спектрах спектрально-двойных звёзд.

Спектрально-двойной называют звезду, двойственность которой обнаруживается при помощи спектральных наблюдений. Для этого её наблюдают в течение нескольких ночей. Если оказывается, что линии её спектра периодически смещаются со временем, то это означает, что скорость источника меняется. Этому может быть множество причин: переменность самой звезды, наличие у неё плотной расширяющейся оболочки, образовавшейся после вспышки , и т. п.

Если получен спектр второй компоненты, который показывает аналогичные смещения, но в противофазе, то можно с уверенностью говорить, что перед нами двойная система. Если первая звезда к нам приближается и её линии сдвинуты в фиолетовую сторону спектра, то вторая - удаляется, и её линии сдвинуты в красную сторону, и наоборот.

Но если вторая звезда сильно уступает по яркости первой, то мы имеем шанс её не увидеть, и тогда нужно рассмотреть другие возможные варианты. Главный признак двойной звезды - периодичность изменения лучевых скоростей и большая разница между максимальной и минимальной скоростью. Но, строго говоря, не исключено, что обнаружена . Чтобы это выяснить, надо вычислить функцию масс, по которой можно судить о минимальной массе невидимого второго компонента и, соответственно, о том, чем он является - , звездой или даже чёрной дырой.

Также по спектроскопическим данным, помимо масс компонентов, можно вычислить расстояние между ними, период обращения и эксцентриситет орбиты. Угол наклона орбиты к лучу зрения выяснить по этим данным невозможно. Поэтому о массе и расстоянии между компонентами можно говорить только как о вычисленных с точностью до угла наклона.

Как и для любого типа объектов, изучаемых астрономами, существуют каталоги спектрально-двойных звёзд. Самый известный и самый обширный из них - «SB9» (от англ. Spectral Binaries). На данный момент в нём 2839 объектов.

Затменно-двойные звёзды

Бывает, что орбитальная плоскость наклонена к лучу зрения под очень маленьким углом: орбиты звёзд такой системы расположены как бы ребром к нам. В такой системе звёзды будут периодически затмевать друг друга, то есть блеск пары будет меняться. Двойные звёзды, у которых наблюдаются такие затмения, называются затменно-двойными или затменно-переменными. Самой известной и первой открытой звездой такого типа является Алголь (Глаз Дьявола) в созвездии Персея.

Микролинзированные двойные

Если на луче зрения между звездой и наблюдателем находится тело с сильным гравитационным полем, то объект будет линзирован. Если бы поле было сильным, то наблюдались бы несколько изображений звезды, но в случае галактических объектов их поле не настолько сильное, чтоб наблюдатель смог различить несколько изображений, в таком случае говорят о микролинзировании. В случае, если гравирующее тело двойная звезда, то кривая блеска, получаемая при прохождении её вдоль луча зрения, сильно отличается от случая одиночной звезды.

С помощью микролинзрования ищутся двойные звезды, где оба компонента маломассивные коричневые карлики.

Явления и феномены, связанные с двойными звёздами

Парадокс Алголя

Этот парадокс сформулирован в середине 20 века советскими астрономами А. Г. Масевичем и П. П. Паренаго, обратившими внимание на несоответствие масс компонентов Алголя и их эволюционной стадии. Согласно теории эволюции звёзд, скорость эволюции массивной звезды гораздо больше, чем у звезды с массой, сравнимой с солнечной, или немногим более. Очевидно, что компоненты двойной звезды образовались в одно и то же время, следовательно, массивный компонент должен проэвоэлюционировать раньше, чем маломассивный. Однако в системе Алголя более массивный компонент был моложе.

Объяснение этого парадокса связано с феноменом перетекания масс в тесных двойных системах и впервые предложено американским астрофизиком Д. Кроуфордом. Если предположить, что в ходе эволюции у одного из компонентов появляется возможность переброса массы на соседа, то парадокс снимается.

Обмен массами между звёздами

Сечение поверхностей равного потенциала в модели Роша в орбитальной плоскости двойной системы

Рассмотрим приближение тесной двойной системы (носящие имя приближения Роша ):

  1. Звезды считаются точечными массами и их собственным моментом осевого вращения можно пренебречь по сравнению с орбитальным
  2. Компоненты вращаются синхронно.
  3. Орбита круговая

Тогда, для компонентов M 1 и M 2 , с суммой больших полуосей a=a 1 +a 2 , введем систему координат, синхронную с орбитальным вращением ТДС. Центр отсчета находится в центре звезды M 1 , а ось X направлена от M 1 к M 2 и ось Z направлена вдоль вектора вращения. Тогда запишем потенциал, связанный с гравитационными полями компонентов и центробежной силой:

где r 1 = √ x 2 +y 2 +z 2 , r 2 = √ (x-a) 2 +y 2 +z 2 , μ= M 2 /(M 1 +M 2) , а ω - частота вращения по орбите компонентов. Используя третий закон Кеплера, потенциал Роша можно переписать следующим образом:

где безразмерный потенциал:

где q = M 2 /M 1

Эквипотенциали находятся из уравнения Φ(x,y,z)=const . Вблизи центров звёзд они мало отличаются от сферических, но по мере удаления отклонения от сферической симметрии становится сильнее. В итоге обе поверхности смыкаются в точке Лагранжа L 1 . Это означает, что потенциальный барьер в этой точке равен 0, и частицы с поверхности звезды, находящие вблизи этой точки, способны перейти внутрь полости Роша соседней звезды, вследствие теплового хаотического движения.

Симбиотические звезды

Взаимодействующие двойные системы, состоящие из и , окруженных общей туманностью. Для них характерны сложные спектры, где наряду с полосами поглощения (например, TiO) присутствуют эмиссионные линии, характерные для туманностей (ОIII, NeIII и т. п. Симбиотические звёзды являются переменными с периодами в несколько сотен дней, для них характерны новоподобные вспышки, во время которых их блеск увеличивается на две-три звёздных величины.

Симбиотические звёзды представляют собой относительно кратковременный, но чрезвычайно важный и богатый своими астрофизическими проявлениями этап в эволюции двойных звёздных систем умеренных масс с начальными периодами обращения 1-100 лет.

Происхождение и эволюция

Механизм формирования одиночной звезды изучен довольно хорошо - это сжатие из-за гравитационной неустойчивости. Также удалось установить функцию распределения начальных масс. Очевидно, что сценарий формирования двойной звезды должен быть таким же, но с дополнительными модификациями. Также он должен объяснять следующие известные факты:

  1. Частота двойных. В среднем она составляет 50 %, но различна для звёзд разных спектральных классов. Для О-звёзд это порядка 70 %, для звёзд типа Солнца (спектральный класс G) это близко к 50 %, а для спектрального класс M около 30 %.
  2. Распределение периода.
  3. Эксцентриситет у двойных звёзд может принимать любое значение 0
  4. Соотношение масс. Распределение соотношения масс q= M 1 / M 2 является самым сложным для измерения, так как влияние эффектов селекции велико, но на данный момент считается, что распределение однородно и лежит в пределах 0.2

На данный момент нет окончательного понимания, какие именно надо вносить модификации, и какие факторы и механизмы играют здесь решающую роль. Все предложенные на данный момент теории можно поделить по тому, какой механизм формирования в них используется:

  1. Теории с промежуточным ядром
  2. Теории с промежуточным диском
  3. Динамические теории

Теории с промежуточным ядром

Самый многочисленный класс теорий. В них формирование идет за счёт быстрого или раннего разделение протооблака.

Самая ранняя из них считает, что в ходе коллапсирования из-за различного рода нестабильностей облако распадается на локальные джинсовские массы, растущие до тех пор, пока наименьшая из них перестанет быть оптически прозрачной и более не может эффективно охлаждаться. Но при этом расчетная функция масс звёзд не совпадает с наблюдаемой.

Ещё одна из ранних теорий предполагала размножение коллапсирующих ядер, вследствие деформации в различные эллиптические фигуры.

Современные же теории рассматриваемого типа считают, что основная причина фрагментации - рост внутренней энергии и энергии вращения по мере сжатия облака.

Теории с промежуточным диском

В теориях с динамическим диском образование происходит в ходе фрагментации протозвёздного диска, то есть гораздо позднее, чем в теориях с промежуточным ядром. Для этого необходим довольно массивный диск, восприимчивый к гравитационным нестабильностям, и газ которого эффективно охлаждается. Тогда могут возникнуть несколько компаньонов, лежащих в одной плоскости, которые аккрецируют газ из родительского диска.

В последнее время количество компьютерных расчетов подобных теорий сильно увеличилось. В рамках подобного подхода хорошо объясняется происхождение тесных двойных систем, а также иерархических систем различной кратности.

Динамические теории

Последний механизм предполагает, что двойные звезды образовались в ходе динамических процессов, спровоцированных соревновательной аккрецией. В данном сценарии предполагается, что молекулярное облако из-за различного рода турбуленций внутри него формирует сгустки приблизительно джинсовской массы. Эти сгустки, взаимодействуя между собой, соревнуются за вещество исходного облака. В таких условиях хорошо работает как уже упомянутая модель с промежуточным диском, так и иные механизмы, речь о которых пойдет ниже. Вдобавок динамическое трение с окружающим газом сближает компоненты.

В качестве одного из механизмов, работающего в данных условиях, предлагается комбинация фрагментации с промежуточным ядром и динамической гипотезы. Это позволяет воспроизвести частоту кратных звёзд в . Однако на данный момент механизм фрагментации точно не описан.

Другой механизм предполагает рост сечения гравитационного взаимодействия у диска до тех пор, пока не будет захвачена близлежащая звезда. Хотя такой механизм вполне подходит для массивных звёзд, но совершенно не годится для маломассивных и вряд ли является доминирующим при образовании двойных звёзд.

Экзопланеты в двойных системах

Экзопланета, находящаяся в двойной системе Kepler-47 глазами художника.

Из более чем 800 ныне известных экзопланет число обращающихся вокруг одиночных звёзд значительно превышает число планет найденных в звёздных системах разной кратности. По последним данным последних насчитывается 64.

Экзопланеты в двойных системах принято разделять по конфигурациям их орбит:

  • Экзопланеты S-класса обращаются вокруг одного из компонентов (например OGLE-2013-BLG-0341LB b). Таковых 57.
  • К P-классу относят обращающихся вокруг обоих компонентов. Таковые обнаружены у NN Ser, DP Leo, HU Aqr, UZ For, Kepler-16 (AB)b, Kepler-34 (AB)b и Kepler-35 (AB)b.

Если попытаться провести статистику, то выяснится:

  1. Значительная часть планет обитают в системах, где компоненты разделены в пределах от 35 до 100 ., концентрируясь вокруг значения в 20 а. е.
  2. Планеты в широких системах (> 100 а. е.) имеют массу от 0.01 до 10 M J (почти как и для одиночных звёзд), в то время как массы планет для систем с меньшим разделением лежат от 0.1 до 10 M J
  3. Планеты в широких системах всегда одиночные
  4. Распределение эксцентриситетов орбиты отличается от одиночных, достигая значений e = 0.925 и e = 0.935.

Важные особенности процессов формирования

Обрезание протопланетного диска. В то время как у одиночных звёзд может тянуться вплоть до (30-50 а. е.), то в двойных звёзд его размер обрезается воздействием второго компонента. Таким образом протяженность протопланетного диска в 2-5 раз меньше расстояния между компонентами.

Искривление протопланетного диска. Оставшийся после обрезания диск продолжает испытывать влияние второго компонента и начинает вытягиваться, деформироваться, сплетаться и даже разрываться. Также такой диск начинает прецессировать.

Сокращения время жизни протопланетного диска Для широких двойных, как и для одиночных время жизни протопланетного диска составляет 1-10 млн лет. Одна для систем с разделением < 40 а. е. Время жизни диска должно составлять в пределах 0,1-1 млн лет.

Планетозимальный сценарий образования

Несовместные сценарии образования

Существуют сценарии в которых изначальная, сразу после формирования, конфигурация планетной системы отличается от текущей и была достигнута в ходе дальнейшей эволюции.

  • Один из таких сценариев - захват планеты у другой звезды. Так как двойная звезда имеет гораздо больше сечения взаимодействия, то и вероятность столкновения и захват планеты у другой звезды существенно выше.
  • Второй сценарий предполагает, что в ходе эволюции одного из компонентов, уже на стадиях после главной последовательности в изначальной планетарной системе возникают нестабильности. В результате которых планета покидает изначальную орбиту и становится общей для обоих компонент.

Астрономические данные и их анализ

Кривые блеска

  • Самих затмений
  • Эффектов элипсоидальности.
  • Эффектов отражения, а вернее переработки излучения одной звезды в атмосфере другой.
  • Однако, анализ только самих затмений, когда компоненты сферически симметричны и отсутствует эффекты отражения, сводится к решению следующей системы уравнений:

    где ξ, ρ - полярные расстояния на диске первой и второй звезды, I a - функция поглощения излучения одной звезды атмосферой другой, I c - функция яркости площадок dσ у различных компонентов, Δ - область перекрытия, r ξc ,r ρc - полные радиусы первой и второй звезды.

    Решение этой системы без априорных предположений невозможно. Ровно как и анализ более сложных случаев с элипсоидальной формой компонентов и эффектами отражения, существенных в различных вариантах тесных двойных систем. Поэтому все современные способы анализа кривых блеска тем или иным образом вводят модельные предположения, параметры которых находят путём другого рода наблюдений.

    Кривые лучевых скоростей

    Если двойная звезда наблюдается спектроскопически, то есть является спектроскопической двойной звездой. То можно построить зависимость изменения лучевых скоростей компонентов от времени. Если предположить, что орбита круговая, то можно записать следующее:

    где V s - лучевая скорость компонента, i - наклонение орбиты к лучу зрения, P - период, a - радиус орбиты компонента. Теперь, если в эту формулу подставить третий закон Кеплера имеем:

    где M s - масса исследуемого компонента, M 2 - масса второго компонента. Таким образом, наблюдая оба компонента можно определить соотношение масс звёзд, составляющих двойную. Если повторно использовать третий закон Кеплера, то последние приводится к следующему:

    где G -гравитационная постоянна, а f(M 2) - функция масс звезды и по определению равна:

    В случае, если орбита не круговая, а имеет эксцентриситет, то можно показать, что для функции масса орбитальный период P должен быть домножен на фактор .

    Если второй компонент не наблюдается, то функция f(M 2) служит нижним пределом его массы.

    Стоит отметить, что изучая только кривые лучевых скоростей невозможно определить все параметры двойной системы, всегда будет присутствовать неопределённость в виде неизвестного угла наклонения орбиты.

    Определение масс компонентов

    Практически всегда гравитационное взаимодействие между двумя звёздами описывается с достаточной точностью законами Ньютона и законами Кеплера, являющимися следствием законов Ньютона. Но для описания двойных пульсаров приходится привлекать ОТО. Изучая наблюдательные проявления релятивистских эффектов, можно ещё раз проверить точность теории относительности.

    Третий закон Кеплера связывает период обращения с расстоянием между компонентами и массой системы:

    ,

    где - период обращения, - большая полуось системы, и - массы компонентов, - гравитационная постоянная. Для визуально-двойной системы есть возможность определить орбиты обоих компонентов, рассчитать период и полуось, а также отношение масс. Но часто о двойственности системы можно судить только по спектральным данным (спектрально-двойные). По движению спектральных линий можно определить лучевые скорости одного компонента, а в редких случаях и сразу двух компонентов. Если известна лучевая скорость только одного компонента, то полную информацию о массах получить нельзя, но можно построить функцию масс и определить верхнюю границу массы второго компонента, а значит сказать, может ли он являться чёрной дырой или нейтронной звездой.

    История открытия и изучения

    Первым выдвинул идею о существовании двойных звёзд Джон Мичелл (Reverend John Michell). На выступлении в Королевском обществе в 1767 году он предположил, что многие звезды, видимые как двойные, действительно могут быть физически связаны. Наблюдательные подтверждения этой гипотезы были опубликованы сэром Уильямом Гершелем в 1802.

    Большое число звёзд видимых в нашей галактике и за её пределами принадлежат к двойным и более кратным . То есть с уверенностью можно сказать, что наша одиночная звезда Солнце принадлежит к меньшинству в классификации звёздных систем. О том, что это за такие системы, давайте поговорим.

    В некоторых источниках говорится, что лишь 30% от общего числа звёзд - одиночные, в других можно найти число 25. Но с совершенствованием методик измерения и изучения двойных и кратных звёзд, процентное соотношение одиночных изменяется. Связано это в первую очередь со сложностью обнаружения маленьких (по размерам, но не массе) звёзд. На сегодняшний день астрономами открыто множество , которые при первом обнаружении могут подходить под описание вторичных звёзд в системе двух и более звёзд, только после детального изучения и множества расчётов исключается вариант, что это звёзда, а найденный объект относят к планетам (определяется это по массе, по гравитационному притяжению, по взаимному расположению, поведению и ещё многим другим факторам).

    Двойные звёзды

    Каппа Волопаса

    Система из двух связанных силами гравитации звёзд называется двойной звёздной системой или просто двойной звездой .

    В первую очередь следует подчеркнуть, что не все оптически рядом расположенные две звезды - двойные. Отсюда следует, что звёзды, которые видны на небе близко друг от друга для наблюдателя с Земли, но при этом не связанные гравитационными силами и не имеющими общий центр масс называются оптически двойными . Хороший пример - α Козерога - пара звёзд находятся на огромном расстоянии друг от друга (примерно 580 световых лет), но нам кажется что они рядом.

    Физически двойные звёзды обращаются вокруг общего центра масс и связаны между собой силами гравитации. Пример - η () Кассиопеи. По периоду вращения и взаимному расстоянию можно определить массу каждой из звезды. Период вращения имеет внушительный диапазон: от нескольких минут, если речь идёт о вращении карликовых звёзд вокруг нейтронных, до нескольких миллионов лет. Расстояния между звёздами примерно могут быть от 10 10 до 10 16 м (около 1 светового года).

    Двойные звёзды имеют весьма обширную классификацию. Приведу лишь основные пункты:

    • Астрометрические (видно перемещение сразу двух объектов);
    • Спектральные (двойственность определяется по спектральным линиям);
    • Затменно-двойные (из-за разного угла наклона к орбите периодически наблюдается затемнение одной звезды другой);
    • Микролинзированные (когда между системой и наблюдателем есть космический объект с сильным гравитационным полем. По такому методу находятся маломассивные коричневые карлики);
    • Спекл-интерферометрические (по дифракционному пределу разрешения звёзд находятся двойные звёзды);
    • Рентгеновские .

    Кратные звёзды

    Как понятно из названия, если число взаимосвязанных звёзд превышает две, то это кратные звёздные системы или . Их также разделяют на оптически и физически кратные звёзды. Если число звёзд в системе можно увидеть невооружённым глазом, в бинокль или телескоп, то такие звёзды называются визуально кратными . Если для определения кратности системы требуются дополнительные спектральные измерения, то это спектрально кратная система . И, если же кратность системы определяется по изменению блеска, то это затменно-кратная система . Простой пример тройной звезды показан ниже - это звезда HD 188753 в созвездии Лебедь:

    Тройная звезда HD 188753

    Как видно на изображении выше, в тройной системе есть пара тесно связанных звёзд и одна удалённая с большей массой, вокруг которой и происходит вращение пары. Но чаще удалённая звёзда вращается вокруг пары тесно связанных звёзд, которые представляют собой единое целое. Такая пара называется главной .

    Конечно, тремя звёздами кратность не ограничивается. Существуют системы из четырёх, пяти и шести звёзд. Чем кратность больше, тем количество таких систем меньше. Например, звезда ε Лиры представляет собой две пары взаимосвязанные между собой, удалённое друг от друга на большое расстояние. Учёными было приблизительно подсчитано, что расстояние между парами должно в 5 и более раз превышать расстояние между звёздами внутри одной пары.

    Лучшим примером шестикратной системы звёзд служит Кастор в созвездии . В ней три пары звёзд организованно взаимодействуют между собой. Больше 6 звёзд в системе пока ещё не обнаружено.

    Кратные звёзды занимают астрономов-наблюдателей не меньше чем дипскай объекты. Особенно красиво звёздные системы выглядят, когда компоненты в них имеют разный цветовой оттенок, например, один из них - красный холодный , а другой - горячая яркая голубая звезда. Есть множество справочников с детальными характеристиками наиболее известных и интересных для наблюдения двойных и кратных звёзд. С частью систем я вас познакомлю в отдельной статье.

    Реферат

    Школа №41

    Двойные звезды - это две (иногда встречается три и более) звезды, обращающиеся вокруг общего центра тяжести (см. Рисунок). Существуют разные двойные звезды: бывают две похожие звезды в паре, а бывают разные (как правило, это красный гигант и белый карлик). Но, вне зависимости от их типа, эти звезды наиболее хорошо поддаются изучению: для них, в отличие от обычных звезд, анализируя их взаимодействие можно выяснить почти все параметры, включая массу, форму орбит и даже примерно выяснить характеристики близкорасположенных к ним звезд. Как правило, эти звезды имеют несколько вытянутую форму вследствие взаимного притяжения. Много таких звезд открыл и изучил в начале нашего века русский астроном С. Н. Блажко. Примерно половина всех звезд нашей Галактики принадлежит к двойным системам, так что двойные звезды, вращающиеся по орбитам одна вокруг другой, явление весьма распространенное.

    Принадлежность к двойной системе очень сильно влияет на всю жизнь звезды, особенно когда напарники находятся близко друг к другу. Потоки вещества, устремляющиеся от одной звезды на другую, приводят к драматическим вспышкам, таким, как взрывы новых и сверхновых звезд.

    Двойные звезды удерживаются вместе взаимным тяготением. Обе звезды двойной системы вращаются по эллиптическим орбитам вокруг некоторой точки, лежащей между ними и называемой центром гравитации этих звезд. Это можно представить себе как точки опоры, если вообразить звезды сидящими на детских качелях: каждая на своем конце доски, положенной на бревно. Чем дальше звезды друг от друга, тем дольше длятся их пути по орбитам. Большинство двойных звезд (или просто – двойных) слишком близки друг к другу, чтобы их можно было различить по отдельности даже в самые мощные телескопы. Если расстояние между партнерами достаточно велико, орбитальный период может измеряться годами, а иногда целым столетием или даже больше. Двойные звезды, которые возможно увидеть раздельно, называются видимыми двойными.

    Как правило, двойные звезды на небе обнаруживаются визуально (первая и них была открыта еще древними арабами) по изменению видимого блеска (тут опасно перепутать их с цефеидами) и близкому нахождению друг к другу. Иногда бывает, что две звезды случайно видны рядом, а на самом деле находятся на значительном расстоянии и не имеют общего центра тяжести (т.е. оптически двойные звезды), однако, это встречается довольно редко.

    Невооружённым глазом вблизи Мицара (средней звезды в ручке Большой Медведицы) видна более слабая звезда – Алькор. Угловое расстояние между Мицаром и Алькором около 12′, а линейное расстояние между этими звёздами примерно 1,7 104 а. е. Это пример оптической двойной звезды: Мицар и Алькор рядом проектируются на небесную сферу, то есть, видны в одном направлении, но физически между собой не связаны. Если предположить, что Мицар и Алькор движутся вокруг общего центра масс, то период обращения составил бы около 2 106 лет! Обычно же звёзды, связанные силами тяготения (компоненты двойной системы) образуют более тесные пары, а периоды обращения их компонентов не превышают сотен лет, а иногда бывают значительно меньше.

    Также, когда одна из звезд не видна, можно определить что звезда двойная по траектории: траектория видимой звезды будет не прямая, а извилистая; причем по характеристикам этой траектории можно вычислить вторую звезду, как, например, это было в случае с Сириусом.

    Если какая-нибудь звезда совершает на небе регулярные колебания, это означает, что у нее есть невидимый партнер. Тогда говорят, что это астрометрическая двойная звезда, обнаруженная с помощью измерений ее положения. Спектроскопические двойные звезды обнаруживают по изменениям и особым характеристикам их спектров, спектр обыкновенной звезды, вроде Солнца, подобен непрерывной радуге, пересеченной многочисленными узкими нелями – так называемыми линиями поглощения. Точные цвета, на которых расположены эти линии, изменяются, если звезда движется к нам или от нас. Это явление называется эффектом Допплера. Когда звезды двойной системы движутся по своим орбитам, они попеременно то приближаются к нам, то удаляются. В результате линии их спектров перемещаются на некотором участке радуги. Такие подвижные линии спектра говорят о том, что звезда двойная. Если оба участника двойной системы имеют примерно одинаковый блеск, в спектре можно увидеть два набора линий. Если одна из звезд гораздо ярче другой, ее свет будет доминировать, но регулярное смещение спектральных линий все равно выдаст ее истинную двойную природу. В качестве примера рассмотрим звезду α Близнецов (Кастор). Расстояние между компонентами (A и B) этой системы примерно равно 100 а. е., а период обращения – около 600 лет. Звёзды A и B Кастора в свою очередь тоже двойные, но их двойственность невозможно обнаружить при визуальных фотографических наблюдениях, потому что компоненты находятся на расстоянии всего лишь нескольких сотых долей астрономических единиц (соответственно малы и периоды обращения). Двойственность таких тесных пар выявляется лишь в результате исследования их спектров, в которых наблюдается периодическое раздвоение спектральных линий. Эффект Доплера позволяет объяснить раздвоение линий тем, что мы видим суммарный спектр, получающийся от наложения спектров звёзд, которые движутся в разных направлениях (одна из них удаляется от нас, а другая приближается).

    Нередко двойственность тесных пар звёзд можно выявить, изучая периодические изменения их блеска. Если направление от наблюдателя на центр масс двойной звезды проходит вблизи плоскости орбиты, то наблюдатель видит затмения, при которых одна звезда на время заслоняет другую. Такие звёзды называются затменными двойными или затменными переменными.

    По многократным наблюдениям затменной переменной звезды можно построить кривую блеска. Если сравнить звездные величины в минимуме и максимуме блеска. Измерив промежуток времени между двумя последовательными максимумами (или минимумами), найдём период изменения блеска. На рисунке 2 изображена кривая блеска типичной затменной переменной звезды β Персея, названной арабами Алголем (глаз Дьявола).

    Из анализа кривых блеска затменных переменных звёзд можно определить ряд важнейших физических характеристик звёзд, например их радиусы.

    Измерение скоростей звезд двойной системы и применение закона тяготения представляют собой важный метод определения масс звезд. Изучение двойных звезд – это единственный прямой способ вычисления звездных масс. Тем не менее, в каждом конкретном случае не так просто получить точный ответ.

    Если предположить, что закон всемирного тяготения постоянен в любой части нашей галактики, то, возможно, измерить массу двойных звезд исходя из законов Кеплера. По III закону Кеплера: ((m1+m2)P2)/((Mсолнца+ mЗемли)T2)=A3/a3, где m1 и m2 – массы звезд, P – их период обращения, T – один год, A – большая полуось орбиты спутника относительно главной звезды, a - расстояние от Земли до Солнца. Из этого уравнения можно найти сумму масс двойной звезды, то есть массу системы. Массу каждой из звезд по отдельности можно найти, зная расстояния каждой из звезд от их общего центра масс (x1,x2). Тогда x1/x2=m2/m1.Исследуя массы различных звезд, было выяснено, что их разброс не очень велик: от 40 масс Солнца до 1/4 массы Солнца.

    Остальные параметры двойных звезд (температура, яркость, светимость...) исследуются так же, как и у обычных.

    В системе близко расположенных двойных звезд взаимные силы тяготения стремятся растянуть каждую из них, придать ей форму груши. Если тяготение достаточно сильно, наступает критический момент, когда вещество начинает утекать с одной звезды и падать на другую. Вокруг этих двух звезд имеется некоторая область в форме трехмерной восьмерки, поверхность которой представляет собой критическую границу. Эти две грушеобразные фигуры, каждая вокруг своей звезды, называются полостями Роша. Если одна из звезд вырастает настолько, что заполняет свою полость Роша, то вещество с нее устремляется на другую звезду в той точке, где полости соприкасаются. Часто звездный материал не опускается прямо на звезду, а сначала закручивается вихрем, образуя так называемый аккреционный диск. Если обе звезды настолько расширились, что заполнили свои полости Роша, то возникает контактная двойная звезда. Материал обеих звезд перемешивается и сливается в шар вокруг двух звездных ядер. Поскольку в конечном счете все звезды разбухают, превращаясь в гиганты, а многие звезды являются двойными, то взаимодействующие двойные системы – явление нередкое. Звезда переливается через край

    Одним из поразительных результатов переноса массы в двойных звездах является так называемая вспышка новой.

    Одна звезда расширяется так, что заполняет свою полость Роша; это означает раздувание наружных слоев звезды до того момента, когда ее материал начнет захватываться другой звездой, подчиняясь ее тяготению. Эта вторая звезда – белый карлик. Внезапно блеск увеличивается примерно на десять звездных величин – вспыхивает новая. Происходит не что иное, как гигантский выброс энергии за очень короткое время, мощный ядерный взрыв на поверхности белого карлика. Когда материал с раздувшейся звезды устремляется к карлику, давление в низвергающемся потоке материи резко возрастает, а температура под новым слоем увеличивается до миллиона градусов. Наблюдались случаи, когда через десятки или сотни лет вспышки новых повторялись. Другие взрывы наблюдались лишь однажды, но они могут повториться через тысячи лет. На звездах иного типа происходят менее драматические вспышки – карликовые новые, – повторяющиеся через дни и месяцы.



    Поддержите проект — поделитесь ссылкой, спасибо!
    Читайте также
    Очистить обувь от соли и реагентов Как очистить ботинки от соли Очистить обувь от соли и реагентов Как очистить ботинки от соли Окисление и потемнение серебра Окисление и потемнение серебра Вязание топа крючком для начинающих из меланжевой пряжи Схемы вязания спицами из меланжевой пряжи Вязание топа крючком для начинающих из меланжевой пряжи Схемы вязания спицами из меланжевой пряжи